Plasticity of von Mises#

This tutorial aims to demonstrate an efficient implementation of the plasticity model of von Mises using an external operator defining the elastoplastic constitutive relations written with the help of the 3rd-party package Numba. Here we consider a cylinder expansion problem in the two-dimensional case in a symmetric formulation.

This tutorial is based on the original implementation of the problem via legacy FEniCS 2019 and its extension for the modern FEniCSx in the setting of convex optimization. A detailed conclusion of the von Mises plastic model in the case of the cylinder expansion problem can be found in [Bonnet et al., 2014]. Do not hesitate to visit the mentioned sources for more information.

We assume the knowledge of the return-mapping procedure, commonly used in the solid mechanics community to solve elastoplasticity problems.

Notation#

Denoting the displacement vector \(\boldsymbol{u}\) we define the strain tensor \(\boldsymbol{\varepsilon}\) as follows

\[ \boldsymbol{\varepsilon} = \frac{1}{2}\left( \nabla\boldsymbol{u} + \nabla\boldsymbol{u}^T \right). \]

Throughout the tutorial, we stick to the Mandel-Voigt notation, according to which the stress tensor \(\boldsymbol{\sigma}\) and the strain tensor \(\boldsymbol{\varepsilon}\) are written as 4-size vectors with the following components

\[\begin{align*} & \boldsymbol{\sigma} = [\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sqrt{2}\sigma_{xy}]^T, \\ & \boldsymbol{\varepsilon} = [\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}, \sqrt{2}\varepsilon_{xy}]^T. \end{align*}\]

Denoting the deviatoric operator \(\mathrm{dev}\), we introduce two additional quantities of interest: the cumulative plastic strain \(p\) and the equivalent stress \(\sigma_\text{eq}\) defined by the following formulas:

\[\begin{align*} & p = \sqrt{\frac{2}{3} \boldsymbol{e} \cdot \boldsymbol{e}}, \\ & \sigma_\text{eq} = \sqrt{\frac{3}{2}\boldsymbol{s} \cdot \boldsymbol{s}}, \end{align*}\]

where \(\boldsymbol{e} = \mathrm{dev}\boldsymbol{\varepsilon}\) and \(\boldsymbol{s} = \mathrm{dev}\boldsymbol{\sigma}\) are deviatoric parts of the stain and stress tensors respectively.

Problem formulation#

The domain of the problem \(\Omega\) represents the first quarter of the hollow cylinder with inner \(R_i\) and outer \(R_o\) radii, where symmetry conditions are set on the left and bottom sides and pressure is set on the inner wall \(\partial\Omega_\text{inner}\). The behaviour of cylinder material is defined by the von Mises yield criterion \(f\) with the linear isotropic hardening law (3)

(3)#\[ f(\boldsymbol{\sigma}) = \sigma_\text{eq}(\boldsymbol{\sigma}) - \sigma_0 - Hp \leq 0, \]

where \(\sigma_0\) is a uniaxial strength and \(H\) is an isotropic hardening modulus, which is defined through the Young modulus \(E\) and the tangent elastic modulus \(E_t = \frac{EH}{E+H}\).

Let V be the functional space of admissible displacement fields. Then, the weak formulation of this problem can be written as follows:

Find \(\boldsymbol{u} \in V\) such that

(4)#\[ F(\boldsymbol{u}; \boldsymbol{v}) = \int\limits_\Omega \boldsymbol{\sigma}(\boldsymbol{\varepsilon}(\boldsymbol{u})) \cdot \boldsymbol{\varepsilon(v)} \,\mathrm{d}\boldsymbol{x} - F_\text{ext}(\boldsymbol{v}) = 0, \quad \forall \boldsymbol{v} \in V. \]

The external force \(F_{\text{ext}}(\boldsymbol{v})\) represents the pressure inside the cylinder and is written as the following Neumann condition

\[ F_\text{ext}(\boldsymbol{v}) = \int\limits_{\partial\Omega_\text{inner}} (-q \boldsymbol{n}) \cdot \boldsymbol{v} \,\mathrm{d}\boldsymbol{x}, \]

where the vector \(\boldsymbol{n}\) is the outward normal to the cylinder surface and the loading parameter \(q\) is progressively adjusted from 0 to \(q_\text{lim} = \frac{2}{\sqrt{3}}\sigma_0\log\left(\frac{R_o}{R_i}\right)\), the analytical collapse load for the perfect plasticity model without hardening.

The modelling is performed under assumptions of the plane strain and an associative plasticity law.

In this tutorial, we treat the stress tensor \(\boldsymbol{\sigma}\) as an external operator acting on the strain tensor \(\boldsymbol{\varepsilon}(\boldsymbol{u})\) and represent it through a FEMExternalOperator object. By the implementation of this external operator, we mean an implementation of the return-mapping procedure, the most common approach to solve plasticity problems. With the help of this procedure, we compute both values of the stress tensor \(\boldsymbol{\sigma}\) and its derivative, so-called the tangent moduli \(\boldsymbol{C}_\text{tang}\).

As before, in order to solve the nonlinear equation (4) we need to compute the Gateaux derivative of \(F\) in the direction \(\boldsymbol{\hat{u}} \in V\):

\[ J(\boldsymbol{u}; \boldsymbol{\hat{u}},\boldsymbol{v}) := D_{\boldsymbol{u}} [F(\boldsymbol{u}; \boldsymbol{v})]\{\boldsymbol{\hat{u}}\} := \int\limits_\Omega \left( \boldsymbol{C}_\text{tang}(\boldsymbol{\varepsilon}(\boldsymbol{u})) \cdot \boldsymbol{\varepsilon}(\boldsymbol{\hat{u}}) \right) \cdot \boldsymbol{\varepsilon(v)} \,\mathrm{d}\boldsymbol{x}, \quad \forall \boldsymbol{v} \in V. \]

The advantage of the von Mises model is that the return-mapping procedure may be performed analytically, so the stress tensor and the tangent moduli may be expressed explicitly using any package. In our case, we the Numba library to define the behaviour of the external operator and its derivative.

Implementation#

Preamble#

from mpi4py import MPI
from petsc4py import PETSc

import matplotlib.pyplot as plt
import numba
import numpy as np
from demo_plasticity_von_mises_pure_ufl import plasticity_von_mises_pure_ufl
from solvers import NonlinearProblemWithCallback
from utilities import build_cylinder_quarter, find_cell_by_point

import basix
import ufl
from dolfinx import fem
from dolfinx.nls.petsc import NewtonSolver
from dolfinx_external_operator import (
    FEMExternalOperator,
    evaluate_external_operators,
    evaluate_operands,
    replace_external_operators,
)

Here we define geometrical and material parameters of the problem as well as some useful constants.

R_e, R_i = 1.3, 1.0  # external/internal radius

E, nu = 70e3, 0.3  # elastic parameters
E_tangent = E / 100.0  # tangent modulus
H = E * E_tangent / (E - E_tangent)  # hardening modulus
sigma_0 = 250.0  # yield strength

lmbda = E * nu / (1.0 + nu) / (1.0 - 2.0 * nu)
mu = E / 2.0 / (1.0 + nu)
# stiffness matrix
C_elas = np.array(
    [
        [lmbda + 2.0 * mu, lmbda, lmbda, 0.0],
        [lmbda, lmbda + 2.0 * mu, lmbda, 0.0],
        [lmbda, lmbda, lmbda + 2.0 * mu, 0.0],
        [0.0, 0.0, 0.0, 2.0 * mu],
    ],
    dtype=PETSc.ScalarType,
)

deviatoric = np.eye(4, dtype=PETSc.ScalarType)
deviatoric[:3, :3] -= np.full((3, 3), 1.0 / 3.0, dtype=PETSc.ScalarType)
mesh, facet_tags, facet_tags_labels = build_cylinder_quarter()
k_u = 2
V = fem.functionspace(mesh, ("Lagrange", k_u, (mesh.geometry.dim,)))
# Boundary conditions
bottom_facets = facet_tags.find(facet_tags_labels["Lx"])
left_facets = facet_tags.find(facet_tags_labels["Ly"])

bottom_dofs_y = fem.locate_dofs_topological(V.sub(1), mesh.topology.dim - 1, bottom_facets)
left_dofs_x = fem.locate_dofs_topological(V.sub(0), mesh.topology.dim - 1, left_facets)

sym_bottom = fem.dirichletbc(np.array(0.0, dtype=PETSc.ScalarType), bottom_dofs_y, V.sub(1))
sym_left = fem.dirichletbc(np.array(0.0, dtype=PETSc.ScalarType), left_dofs_x, V.sub(0))

bcs = [sym_bottom, sym_left]


def epsilon(v):
    grad_v = ufl.grad(v)
    return ufl.as_vector([grad_v[0, 0], grad_v[1, 1], 0, np.sqrt(2.0) * 0.5 * (grad_v[0, 1] + grad_v[1, 0])])


k_stress = 2 * (k_u - 1)
ds = ufl.Measure(
    "ds",
    domain=mesh,
    subdomain_data=facet_tags,
    metadata={"quadrature_degree": k_stress, "quadrature_scheme": "default"},
)

dx = ufl.Measure(
    "dx",
    domain=mesh,
    metadata={"quadrature_degree": k_stress, "quadrature_scheme": "default"},
)

Du = fem.Function(V, name="displacement_increment")
S_element = basix.ufl.quadrature_element(mesh.topology.cell_name(), degree=k_stress, value_shape=(4,))
S = fem.functionspace(mesh, S_element)
sigma = FEMExternalOperator(epsilon(Du), function_space=S)

n = ufl.FacetNormal(mesh)
loading = fem.Constant(mesh, PETSc.ScalarType(0.0))

v = ufl.TestFunction(V)
F = ufl.inner(sigma, epsilon(v)) * dx - ufl.inner(loading * -n, v) * ds(facet_tags_labels["inner"])

# Internal state
P_element = basix.ufl.quadrature_element(mesh.topology.cell_name(), degree=k_stress)
P = fem.functionspace(mesh, P_element)

p = fem.Function(P, name="cumulative_plastic_strain")
dp = fem.Function(P, name="incremental_plastic_strain")
sigma_n = fem.Function(S, name="stress_n")

Defining the external operator#

During the automatic differentiation of the form \(F\), the following terms will appear in the Jacobian

\[ \frac{\mathrm{d} \boldsymbol{\sigma}}{\mathrm{d} \boldsymbol{\varepsilon}}(\boldsymbol{\varepsilon}(\boldsymbol{u})) \cdot \boldsymbol{\varepsilon}(\boldsymbol{\hat{u}}) = \boldsymbol{C}_\text{tang}(\boldsymbol{\varepsilon}(\boldsymbol{u})) \cdot \boldsymbol{\varepsilon}(\boldsymbol{\hat{u}}), \]

where the “trial” part \(\boldsymbol{\varepsilon}(\boldsymbol{\hat{u}})\) will be handled by the framework and the derivative of the operator \(\frac{\mathrm{d} \boldsymbol{\sigma}}{\mathrm{d} \boldsymbol{\varepsilon}}\) must be implemented by the user. In this tutorial, we implement the derivative using the Numba package.

First of all, we implement the return-mapping procedure locally in the function _kernel. It computes the values of the stress tensor, the tangent moduli and the increment of cumulative plastic strain at a single Gausse node. For more details, visit the original implementation of this problem for the legacy FEniCS 2019.

Then we iterate over each Gauss node and compute the quantities of interest globally in the return_mapping function with the @numba.njit decorator. This guarantees that the function will be compiled during its first call and ordinary for-loops will be efficiently processed.

num_quadrature_points = P_element.dim


@numba.njit
def return_mapping(deps_, sigma_n_, p_):
    """Performs the return-mapping procedure."""
    num_cells = deps_.shape[0]

    C_tang_ = np.empty((num_cells, num_quadrature_points, 4, 4), dtype=PETSc.ScalarType)
    sigma_ = np.empty_like(sigma_n_)
    dp_ = np.empty_like(p_)

    def _kernel(deps_local, sigma_n_local, p_local):
        """Performs the return-mapping procedure locally."""
        sigma_elastic = sigma_n_local + C_elas @ deps_local
        s = deviatoric @ sigma_elastic
        sigma_eq = np.sqrt(3.0 / 2.0 * np.dot(s, s))

        f_elastic = sigma_eq - sigma_0 - H * p_local
        f_elastic_plus = (f_elastic + np.sqrt(f_elastic**2)) / 2.0

        dp = f_elastic_plus / (3 * mu + H)

        n_elas = s / sigma_eq * f_elastic_plus / f_elastic
        beta = 3 * mu * dp / sigma_eq

        sigma = sigma_elastic - beta * s

        n_elas_matrix = np.outer(n_elas, n_elas)
        C_tang = C_elas - 3 * mu * (3 * mu / (3 * mu + H) - beta) * n_elas_matrix - 2 * mu * beta * deviatoric

        return C_tang, sigma, dp

    for i in range(0, num_cells):
        for j in range(0, num_quadrature_points):
            C_tang_[i, j], sigma_[i, j], dp_[i, j] = _kernel(deps_[i, j], sigma_n_[i, j], p_[i, j])

    return C_tang_, sigma_, dp_

Now nothing stops us from defining the implementation of the external operator derivative (the tangent tensor \(\boldsymbol{C}_\text{tang}\)) in the function C_tang_impl. It returns global values of the derivative, stress tensor and the cumulative plastic increment.

def C_tang_impl(deps):
    num_cells, num_quadrature_points, _ = deps.shape

    deps_ = deps.reshape((num_cells, num_quadrature_points, 4))
    sigma_n_ = sigma_n.x.array.reshape((num_cells, num_quadrature_points, 4))
    p_ = p.x.array.reshape((num_cells, num_quadrature_points))

    C_tang_, sigma_, dp_ = return_mapping(deps_, sigma_n_, p_)

    return C_tang_.reshape(-1), sigma_.reshape(-1), dp_.reshape(-1)

It is worth noting that at the time of the derivative evaluation, we compute the values of the external operator as well. Thus, there is no need for a separate implementation of the operator \(\boldsymbol{\sigma}\). We will reuse the output of the C_tang_impl to update values of the external operator further in the Newton loop.

def sigma_external(derivatives):
    if derivatives == (1,):
        return C_tang_impl
    else:
        return NotImplementedError


sigma.external_function = sigma_external

Note

The framework allows implementations of external operators and its derivatives to return additional outputs. In our example, alongside with the values of the derivative, the function C_tang_impl returns, the values of the stress tensor and the cumulative plastic increment. Both additional outputs may be reused by the user afterwards in the Newton loop.

Form manipulations#

As in the previous tutorials before solving the problem we need to perform some transformation of both linear and bilinear forms.

u_hat = ufl.TrialFunction(V)
J = ufl.derivative(F, Du, u_hat)
J_expanded = ufl.algorithms.expand_derivatives(J)

F_replaced, F_external_operators = replace_external_operators(F)
J_replaced, J_external_operators = replace_external_operators(J_expanded)

F_form = fem.form(F_replaced)
J_form = fem.form(J_replaced)

Note

We remind that in the code above we replace FEMExternalOperator objects by their fem.Function representatives, the coefficients which are allocated during the call of the FEMExternalOperator constructor. The access to these coefficients may be carried out through the field ref_coefficient of an FEMExternalOperator object. For example, the following code returns the finite coefficient associated with the tangent matrix C_tang = J_external_operators[0].ref_coefficient.

Solving the problem#

Once we prepared the forms containing external operators, we can defind the nonlinear problem and its solver. Here we modified the original DOLFINx NonlinearProblem and called it NonlinearProblemWithCallback to let the solver evaluate external operators at each iteration. For this matter we define the function constitutive_update with external operators evaluations and update of the internal variable dp.

def constitutive_update():
    evaluated_operands = evaluate_operands(F_external_operators)
    ((_, sigma_new, dp_new),) = evaluate_external_operators(J_external_operators, evaluated_operands)
    # This avoids having to evaluate the external operators of F.
    sigma.ref_coefficient.x.array[:] = sigma_new
    dp.x.array[:] = dp_new


problem = NonlinearProblemWithCallback(F_replaced, Du, bcs=bcs, J=J_replaced, external_callback=constitutive_update)

Now we are ready to solve the problem.

solver = NewtonSolver(mesh.comm, problem)
solver.max_it = 200
solver.rtol = 1e-8
ksp = solver.krylov_solver
opts = PETSc.Options()  # type: ignore
option_prefix = ksp.getOptionsPrefix()
opts[f"{option_prefix}ksp_type"] = "preonly"
opts[f"{option_prefix}pc_type"] = "lu"
opts[f"{option_prefix}pc_factor_mat_solver_type"] = "mumps"
ksp.setFromOptions()

u = fem.Function(V, name="displacement")

x_point = np.array([[R_i, 0, 0]])
cells, points_on_process = find_cell_by_point(mesh, x_point)

q_lim = 2.0 / np.sqrt(3.0) * np.log(R_e / R_i) * sigma_0
num_increments = 20
load_steps = np.linspace(0, 1.1, num_increments, endpoint=True) ** 0.5
loadings = q_lim * load_steps
results = np.zeros((num_increments, 2))

eps = np.finfo(PETSc.ScalarType).eps

for i, loading_v in enumerate(loadings):
    residual = solver._b.norm()
    if MPI.COMM_WORLD.rank == 0:
        print(f"Load increment #{i}, load: {loading_v:.3f}")

    loading.value = loading_v
    Du.x.array[:] = eps

    iters, _ = solver.solve(Du)
    print(f"\tInner Newton iterations: {iters}")

    u.x.petsc_vec.axpy(1.0, Du.x.petsc_vec)
    u.x.scatter_forward()

    p.x.petsc_vec.axpy(1.0, dp.x.petsc_vec)
    sigma_n.x.array[:] = sigma.ref_coefficient.x.array

    if len(points_on_process) > 0:
        results[i, :] = (u.eval(points_on_process, cells)[0], loading.value / q_lim)
Load increment #0, load: 0.000
	Inner Newton iterations: 0
Load increment #1, load: 18.224
	Inner Newton iterations: 1
Load increment #2, load: 25.772
	Inner Newton iterations: 1
Load increment #3, load: 31.564
	Inner Newton iterations: 1
Load increment #4, load: 36.447
	Inner Newton iterations: 1
Load increment #5, load: 40.749
	Inner Newton iterations: 1
Load increment #6, load: 44.638
	Inner Newton iterations: 1
Load increment #7, load: 48.215
	Inner Newton iterations: 1
Load increment #8, load: 51.544
	Inner Newton iterations: 1
Load increment #9, load: 54.671
	Inner Newton iterations: 1
Load increment #10, load: 57.628
	Inner Newton iterations: 1
Load increment #11, load: 60.441
	Inner Newton iterations: 1
Load increment #12, load: 63.128
	Inner Newton iterations: 4
Load increment #13, load: 65.706
	Inner Newton iterations: 4
Load increment #14, load: 68.186
	Inner Newton iterations: 4
Load increment #15, load: 70.580
	Inner Newton iterations: 5
Load increment #16, load: 72.894
	Inner Newton iterations: 5
Load increment #17, load: 75.138
	Inner Newton iterations: 5
Load increment #18, load: 77.316
	Inner Newton iterations: 7
Load increment #19, load: 79.435
	Inner Newton iterations: 7

Post-processing#

In order to verify the correctness of obtained results, we perform their comparison against a “pure UFl” implementation. Thanks to simplicity of the von Mises model we can express stress tensor and tangent moduli analytically within the variational setting and so in UFL. Such a performant implementation is presented by the function plasticity_von_mises_pure_ufl.

results_pure_ufl = plasticity_von_mises_pure_ufl(verbose=True)
Increment#1: load = 18.224, Residual0 = 8.60e+00
	it#0 Residual: 3.97e-13

Increment#2: load = 25.772, Residual0 = 5.04e+00
	it#0 Residual: 2.04e-13

Increment#3: load = 31.564, Residual0 = 8.29e-01
	it#0 Residual: 6.71e-14

Increment#4: load = 36.447, Residual0 = 4.29e-01
	it#0 Residual: 5.75e-14

Increment#5: load = 40.749, Residual0 = 2.74e-01
	it#0 Residual: 4.83e-14

Increment#6: load = 44.638, Residual0 = 1.95e-01
	it#0 Residual: 5.27e-14

Increment#7: load = 48.215, Residual0 = 1.48e-01
	it#0 Residual: 4.50e-14

Increment#8: load = 51.544, Residual0 = 1.17e-01
	it#0 Residual: 4.61e-14

Increment#9: load = 54.671, Residual0 = 9.55e-02
	it#0 Residual: 4.98e-14

Increment#10: load = 57.628, Residual0 = 7.99e-02
	it#0 Residual: 5.65e-14
Increment#11: load = 60.441, Residual0 = 6.82e-02
	it#0 Residual: 4.79e-14

Increment#12: load = 63.128, Residual0 = 1.54e+00
	it#0 Residual: 2.27e-02
	it#1 Residual: 2.76e-06
	it#2 Residual: 6.44e-14

Increment#13: load = 65.706, Residual0 = 1.04e+00
	it#0 Residual: 1.01e-01
	it#1 Residual: 1.44e-05
	it#2 Residual: 9.57e-13

Increment#14: load = 68.186, Residual0 = 2.14e+00
	it#0 Residual: 2.80e-02
	it#1 Residual: 7.70e-06
	it#2 Residual: 1.24e-12

Increment#15: load = 70.580, Residual0 = 2.19e+00
	it#0 Residual: 4.33e-02
	it#1 Residual: 4.16e-05
	it#2 Residual: 7.22e-11

Increment#16: load = 72.894, Residual0 = 1.99e+00
	it#0 Residual: 3.00e-02
	it#1 Residual: 2.42e-05
	it#2 Residual: 2.07e-11

Increment#17: load = 75.138, Residual0 = 2.17e+00
	it#0 Residual: 5.33e-02
	it#1 Residual: 5.64e-05
	it#2 Residual: 2.01e-10

Increment#18: load = 77.316, Residual0 = 5.62e+00
	it#0 Residual: 4.16e+00
	it#1 Residual: 5.71e-01
	it#2 Residual: 6.14e-03
	it#3 Residual: 6.92e-07
	it#4 Residual: 5.13e-13

Increment#19: load = 79.435, Residual0 = 6.05e+00
	it#0 Residual: 6.60e-01
	it#1 Residual: 2.43e-03
	it#2 Residual: 8.20e-08
	it#3 Residual: 1.03e-12

Here below we plot the displacement of the inner boundary of the cylinder \(u_x(R_i, 0)\) with respect to the applied pressure in the von Mises model with isotropic hardening. The plastic deformations are reached at the pressure \(q_{\lim}\) equal to the analytical collapse load for perfect plasticity.

if len(points_on_process) > 0:
    plt.plot(results_pure_ufl[:, 0], results_pure_ufl[:, 1], "o-", label="pure UFL")
    plt.plot(results[:, 0], results[:, 1], "*-", label="dolfinx-external-operator (Numba)")
    plt.xlabel(r"Displacement of inner boundary $u_x$ at $(R_i, 0)$ [mm]")
    plt.ylabel(r"Applied pressure $q/q_{\text{lim}}$ [-]")
    plt.legend()
    plt.grid()
    plt.savefig("output.png")
    plt.show()
../_images/1b3bdee5e8e0c02e90277ca4031b65c0947fba3e19c8b72d353b67fd1bedc731.png

References#

[BFR14]

Marc Bonnet, Attilio Frangi, and Christian Rey. The finite element method in solid mechanics. McGraw Hill Education, 2014. URL: https://hal.science/hal-01083772.