Plasticity of Mohr-Coulomb with apex-smoothing#
This tutorial aims to demonstrate how modern automatic algorithmic
differentiation (AD) techniques may be used to define a complex constitutive
model demanding a lot of by-hand differentiation. In particular, we implement
the non-associative plasticity model of Mohr-Coulomb with apex-smoothing applied
to a slope stability problem for soil. We use the
JAX package to define constitutive
relations including the differentiation of certain terms and
FEMExternalOperator
class to incorporate this model into a weak formulation
within UFL.
The tutorial is based on the limit analysis within semi-definite programming framework, where the plasticity model was replaced by the MFront/TFEL implementation of the Mohr-Coulomb elastoplastic model with apex smoothing.
Problem formulation#
We solve a slope stability problem of a soil domain \(\Omega\) represented by a rectangle \([0; L] \times [0; W]\) with homogeneous Dirichlet boundary conditions for the displacement field \(\boldsymbol{u} = \boldsymbol{0}\) on the right side \(x = L\) and the bottom one \(z = 0\). The loading consists of a gravitational body force \(\boldsymbol{q}=[0, -\gamma]^T\) with \(\gamma\) being the soil self-weight. The solution of the problem is to find the collapse load \(q_\text{lim}\), for which we know an analytical solution in the case of the standard Mohr-Coulomb model without smoothing under plane strain assumption for associative plastic law [Chen and Liu, 1990]. Here we follow the same Mandel-Voigt notation as in the von Mises plasticity tutorial.
If \(V\) is a functional space of admissible displacement fields, then we can write out a weak formulation of the problem:
Find \(\boldsymbol{u} \in V\) such that
where \(\boldsymbol{\sigma}\) is an external operator representing the stress tensor.
Note
Although the tutorial shows the implementation of the Mohr-Coulomb model, it is quite general to be adapted to a wide rage of plasticity models that may be defined through a yield surface and a plastic potential.
Implementation#
Preamble#
from mpi4py import MPI
from petsc4py import PETSc
import jax
import jax.lax
import jax.numpy as jnp
import matplotlib.cm as cm
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import numpy as np
from mpltools import annotation # for slope markers
from solvers import LinearProblem
from utilities import find_cell_by_point
import basix
import ufl
from dolfinx import default_scalar_type, fem, mesh
from dolfinx_external_operator import (
FEMExternalOperator,
evaluate_external_operators,
evaluate_operands,
replace_external_operators,
)
jax.config.update("jax_enable_x64", True)
Here we define geometrical and material parameters of the problem as well as some useful constants.
E = 6778 # [MPa] Young modulus
nu = 0.25 # [-] Poisson ratio
c = 3.45 # [MPa] cohesion
phi = 30 * np.pi / 180 # [rad] friction angle
psi = 30 * np.pi / 180 # [rad] dilatancy angle
theta_T = 26 * np.pi / 180 # [rad] transition angle as defined by Abbo and Sloan
a = 0.26 * c / np.tan(phi) # [MPa] tension cuff-off parameter
L, H = (1.2, 1.0)
Nx, Ny = (50, 50)
gamma = 1.0
domain = mesh.create_rectangle(MPI.COMM_WORLD, [np.array([0, 0]), np.array([L, H])], [Nx, Ny])
k_u = 2
gdim = domain.topology.dim
V = fem.functionspace(domain, ("Lagrange", k_u, (gdim,)))
# Boundary conditions
def on_right(x):
return np.isclose(x[0], L)
def on_bottom(x):
return np.isclose(x[1], 0.0)
bottom_dofs = fem.locate_dofs_geometrical(V, on_bottom)
right_dofs = fem.locate_dofs_geometrical(V, on_right)
bcs = [
fem.dirichletbc(np.array([0.0, 0.0], dtype=PETSc.ScalarType), bottom_dofs, V),
fem.dirichletbc(np.array([0.0, 0.0], dtype=PETSc.ScalarType), right_dofs, V),
]
def epsilon(v):
grad_v = ufl.grad(v)
return ufl.as_vector(
[
grad_v[0, 0],
grad_v[1, 1],
0.0,
np.sqrt(2.0) * 0.5 * (grad_v[0, 1] + grad_v[1, 0]),
]
)
k_stress = 2 * (k_u - 1)
dx = ufl.Measure(
"dx",
domain=domain,
metadata={"quadrature_degree": k_stress, "quadrature_scheme": "default"},
)
stress_dim = 2 * gdim
S_element = basix.ufl.quadrature_element(domain.topology.cell_name(), degree=k_stress, value_shape=(stress_dim,))
S = fem.functionspace(domain, S_element)
Du = fem.Function(V, name="Du")
u = fem.Function(V, name="Total_displacement")
du = fem.Function(V, name="du")
# v = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
sigma = FEMExternalOperator(epsilon(Du), function_space=S)
sigma_n = fem.Function(S, name="sigma_n")
Defining plasticity model and external operator#
The constitutive model of the soil is described by a non-associative plasticity law without hardening that is defined by the Mohr-Coulomb yield surface \(f\) and the plastic potential \(g\). Both quantities may be expressed through the following function \(h\)
where \(\phi\) and \(\psi\) are friction and dilatancy angles, \(c\) is a cohesion, \(I_1(\boldsymbol{\sigma}) = \mathrm{tr} \boldsymbol{\sigma}\) is the first invariant of the stress tensor and \(J_2(\boldsymbol{\sigma}) = \frac{1}{2}\boldsymbol{s} \cdot \boldsymbol{s}\) is the second invariant of the deviatoric part of the stress tensor. The expression of the coefficient \(K(\alpha)\) may be found in the MFront/TFEL implementation of this plastic model.
During the plastic loading the stress-strain state of the solid must satisfy the following system of nonlinear equations
where \(\Delta\) is associated with increments of a quantity between the next loading step \(n + 1\) and the current loading step \(n\).
By introducing the residual vector \(\boldsymbol{r} = [\boldsymbol{r}_{g}^T, r_f]^T\) and its argument vector \(\boldsymbol{y}_{n+1} = [\boldsymbol{\sigma}_{n+1}^T, \Delta\lambda]^T\), we obtain the following nonlinear constitutive equation:
To solve this equation we apply the Newton method and introduce the local Jacobian of the residual vector \(\boldsymbol{j} := \frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} \boldsymbol{y}}\). Thus we solve the following linear system at each quadrature point for the plastic phase
During the elastic loading, we consider a trivial system of equations
The algorithm solving the systems (5)–(6) is called the return-mapping procedure and the solution defines the return-mapping correction of the stress tensor. By implementation of the external operator \(\boldsymbol{\sigma}\) we mean the implementation of this algorithmic procedure.
The automatic differentiation tools of the JAX library are applied to calculate the three distinct derivatives:
\(\frac{\mathrm{d} g}{\mathrm{d}\boldsymbol{\sigma}}\) - derivative of the plastic potential \(g\),
\(j = \frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} \boldsymbol{y}}\) - derivative of the local residual \(\boldsymbol{r}\),
\(\boldsymbol{C}_\text{tang} = \frac{\mathrm{d}\boldsymbol{\sigma}}{\mathrm{d}\boldsymbol{\varepsilon}}\) - stress tensor derivative or consistent tangent moduli.
Defining yield surface and plastic potential#
First of all, we define supplementary functions that help us to express the
yield surface \(f\) and the plastic potential \(g\). In the following definitions,
we use built-in functions of the JAX package, in particular, the conditional
primitive jax.lax.cond
. It is necessary for the correct work of the AD tool
and just-in-time compilation. For more details, please, visit the JAX
documentation.
def J3(s):
return s[2] * (s[0] * s[1] - s[3] * s[3] / 2.0)
def J2(s):
return 0.5 * jnp.vdot(s, s)
def theta(s):
J2_ = J2(s)
arg = -(3.0 * np.sqrt(3.0) * J3(s)) / (2.0 * jnp.sqrt(J2_ * J2_ * J2_))
arg = jnp.clip(arg, -1.0, 1.0)
theta = 1.0 / 3.0 * jnp.arcsin(arg)
return theta
def sign(x):
return jax.lax.cond(x < 0.0, lambda x: -1, lambda x: 1, x)
def coeff1(theta, angle):
return np.cos(theta_T) - (1.0 / np.sqrt(3.0)) * np.sin(angle) * np.sin(theta_T)
def coeff2(theta, angle):
return sign(theta) * np.sin(theta_T) + (1.0 / np.sqrt(3.0)) * np.sin(angle) * np.cos(theta_T)
coeff3 = 18.0 * np.cos(3.0 * theta_T) * np.cos(3.0 * theta_T) * np.cos(3.0 * theta_T)
def C(theta, angle):
return (
-np.cos(3.0 * theta_T) * coeff1(theta, angle) - 3.0 * sign(theta) * np.sin(3.0 * theta_T) * coeff2(theta, angle)
) / coeff3
def B(theta, angle):
return (
sign(theta) * np.sin(6.0 * theta_T) * coeff1(theta, angle) - 6.0 * np.cos(6.0 * theta_T) * coeff2(theta, angle)
) / coeff3
def A(theta, angle):
return (
-(1.0 / np.sqrt(3.0)) * np.sin(angle) * sign(theta) * np.sin(theta_T)
- B(theta, angle) * sign(theta) * np.sin(3 * theta_T)
- C(theta, angle) * np.sin(3.0 * theta_T) * np.sin(3.0 * theta_T)
+ np.cos(theta_T)
)
def K(theta, angle):
def K_false(theta):
return jnp.cos(theta) - (1.0 / np.sqrt(3.0)) * np.sin(angle) * jnp.sin(theta)
def K_true(theta):
return (
A(theta, angle)
+ B(theta, angle) * jnp.sin(3.0 * theta)
+ C(theta, angle) * jnp.sin(3.0 * theta) * jnp.sin(3.0 * theta)
)
return jax.lax.cond(jnp.abs(theta) > theta_T, K_true, K_false, theta)
def a_g(angle):
return a * np.tan(phi) / np.tan(angle)
dev = np.array(
[
[2.0 / 3.0, -1.0 / 3.0, -1.0 / 3.0, 0.0],
[-1.0 / 3.0, 2.0 / 3.0, -1.0 / 3.0, 0.0],
[-1.0 / 3.0, -1.0 / 3.0, 2.0 / 3.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
],
dtype=PETSc.ScalarType,
)
tr = np.array([1.0, 1.0, 1.0, 0.0], dtype=PETSc.ScalarType)
def surface(sigma_local, angle):
s = dev @ sigma_local
I1 = tr @ sigma_local
theta_ = theta(s)
return (
(I1 / 3.0 * np.sin(angle))
+ jnp.sqrt(
J2(s) * K(theta_, angle) * K(theta_, angle) + a_g(angle) * a_g(angle) * np.sin(angle) * np.sin(angle)
)
- c * np.cos(angle)
)
By picking up an appropriate angle we define the yield surface \(f\) and the plastic potential \(g\).
def f(sigma_local):
return surface(sigma_local, phi)
def g(sigma_local):
return surface(sigma_local, psi)
dgdsigma = jax.jacfwd(g)
Solving constitutive equations#
In this section, we define the constitutive model by solving the systems
(5)–(6). They must be solved at each Gauss point, so we
apply the Newton method, implement the whole algorithm locally and then
vectorize the final result using jax.vmap
.
In the following cell, we define locally the residual \(\boldsymbol{r}\) and
its Jacobian drdy
.
lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))
mu = E / (2.0 * (1.0 + nu))
C_elas = np.array(
[
[lmbda + 2 * mu, lmbda, lmbda, 0],
[lmbda, lmbda + 2 * mu, lmbda, 0],
[lmbda, lmbda, lmbda + 2 * mu, 0],
[0, 0, 0, 2 * mu],
],
dtype=PETSc.ScalarType,
)
S_elas = np.linalg.inv(C_elas)
ZERO_VECTOR = np.zeros(stress_dim, dtype=PETSc.ScalarType)
def deps_p(sigma_local, dlambda, deps_local, sigma_n_local):
sigma_elas_local = sigma_n_local + C_elas @ deps_local
yielding = f(sigma_elas_local)
def deps_p_elastic(sigma_local, dlambda):
return ZERO_VECTOR
def deps_p_plastic(sigma_local, dlambda):
return dlambda * dgdsigma(sigma_local)
return jax.lax.cond(yielding <= 0.0, deps_p_elastic, deps_p_plastic, sigma_local, dlambda)
def r_g(sigma_local, dlambda, deps_local, sigma_n_local):
deps_p_local = deps_p(sigma_local, dlambda, deps_local, sigma_n_local)
return sigma_local - sigma_n_local - C_elas @ (deps_local - deps_p_local)
def r_f(sigma_local, dlambda, deps_local, sigma_n_local):
sigma_elas_local = sigma_n_local + C_elas @ deps_local
yielding = f(sigma_elas_local)
def r_f_elastic(sigma_local, dlambda):
return dlambda
def r_f_plastic(sigma_local, dlambda):
return f(sigma_local)
return jax.lax.cond(yielding <= 0.0, r_f_elastic, r_f_plastic, sigma_local, dlambda)
def r(y_local, deps_local, sigma_n_local):
sigma_local = y_local[:stress_dim]
dlambda_local = y_local[-1]
res_g = r_g(sigma_local, dlambda_local, deps_local, sigma_n_local)
res_f = r_f(sigma_local, dlambda_local, deps_local, sigma_n_local)
res = jnp.c_["0,1,-1", res_g, res_f] # concatenates an array and a scalar
return res
drdy = jax.jacfwd(r)
Then we define the function return_mapping
that implements the
return-mapping algorithm numerically via the Newton method.
Nitermax, tol = 200, 1e-10
ZERO_SCALAR = np.array([0.0])
def return_mapping(deps_local, sigma_n_local):
"""Performs the return-mapping procedure.
It solves elastoplastic constitutive equations numerically by applying the
Newton method in a single Gauss point. The Newton loop is implement via
`jax.lax.while_loop`.
The function returns `sigma_local` two times to reuse its values after
differentiation, i.e. as once we apply
`jax.jacfwd(return_mapping, has_aux=True)` the ouput function will
have an output of
`(C_tang_local, (sigma_local, niter_total, yielding, norm_res, dlambda))`.
Returns:
sigma_local: The stress at the current Gauss point.
niter_total: The total number of iterations.
yielding: The value of the yield function.
norm_res: The norm of the residuals.
dlambda: The value of the plastic multiplier.
"""
niter = 0
dlambda = ZERO_SCALAR
sigma_local = sigma_n_local
y_local = jnp.concatenate([sigma_local, dlambda])
res = r(y_local, deps_local, sigma_n_local)
norm_res0 = jnp.linalg.norm(res)
def cond_fun(state):
norm_res, niter, _ = state
return jnp.logical_and(norm_res / norm_res0 > tol, niter < Nitermax)
def body_fun(state):
norm_res, niter, history = state
y_local, deps_local, sigma_n_local, res = history
j = drdy(y_local, deps_local, sigma_n_local)
j_inv_vp = jnp.linalg.solve(j, -res)
y_local = y_local + j_inv_vp
res = r(y_local, deps_local, sigma_n_local)
norm_res = jnp.linalg.norm(res)
history = y_local, deps_local, sigma_n_local, res
niter += 1
return (norm_res, niter, history)
history = (y_local, deps_local, sigma_n_local, res)
norm_res, niter_total, y_local = jax.lax.while_loop(cond_fun, body_fun, (norm_res0, niter, history))
sigma_local = y_local[0][:stress_dim]
dlambda = y_local[0][-1]
sigma_elas_local = C_elas @ deps_local
yielding = f(sigma_n_local + sigma_elas_local)
return sigma_local, (sigma_local, niter_total, yielding, norm_res, dlambda)
Consistent tangent stiffness matrix#
Not only is the automatic differentiation able to compute the derivative of a mathematical expression but also a numerical algorithm. For instance, AD can calculate the derivative of the function performing return-mapping with respect to its output, the stress tensor \(\boldsymbol{\sigma}\). In the context of the consistent tangent moduli \(\boldsymbol{C}_\text{tang}\), this feature becomes very useful, as there is no need to write an additional program computing the stress derivative.
JAX’s AD tool permits taking the derivative of the function return_mapping
,
which is factually the while loop. The derivative is taken with respect to the
first output and the remaining outputs are used as auxiliary data. Thus, the
derivative dsigma_ddeps
returns both values of the consistent tangent moduli
and the stress tensor, so there is no need in a supplementary computation of the
stress tensor.
dsigma_ddeps = jax.jacfwd(return_mapping, has_aux=True)
Defining external operator#
Once we define the function dsigma_ddeps
, which evaluates both the
external operator and its derivative locally, we can simply vectorize it and
define the final implementation of the external operator derivative.
Note
The function dsigma_ddeps
containing a while_loop
is designed to be called
at a single Gauss point that’s why we need to vectorize it for the all points
of our functional space S
. For this purpose we use the vmap
function of JAX.
It creates another while_loop
, which terminates only when all mapped loops
terminate. Find further details in this
discussion.
dsigma_ddeps_vec = jax.jit(jax.vmap(dsigma_ddeps, in_axes=(0, 0)))
def C_tang_impl(deps):
deps_ = deps.reshape((-1, stress_dim))
sigma_n_ = sigma_n.x.array.reshape((-1, stress_dim))
(C_tang_global, state) = dsigma_ddeps_vec(deps_, sigma_n_)
sigma_global, niter, yielding, norm_res, dlambda = state
unique_iters, counts = jnp.unique(niter, return_counts=True)
print("\tInner Newton summary:")
print(f"\t\tUnique number of iterations: {unique_iters}")
print(f"\t\tCounts of unique number of iterations: {counts}")
print(f"\t\tMaximum f: {jnp.max(yielding)}")
print(f"\t\tMaximum residual: {jnp.max(norm_res)}")
return C_tang_global.reshape(-1), sigma_global.reshape(-1)
Similarly to the von Mises example, we do not implement explicitly the evaluation of the external operator. Instead, we obtain its values during the evaluation of its derivative and then update the values of the operator in the main Newton loop.
def sigma_external(derivatives):
if derivatives == (1,):
return C_tang_impl
else:
return NotImplementedError
sigma.external_function = sigma_external
Defining the forms#
q = fem.Constant(domain, default_scalar_type((0, -gamma)))
def F_ext(v):
return ufl.dot(q, v) * dx
u_hat = ufl.TrialFunction(V)
F = ufl.inner(epsilon(v), sigma) * dx - F_ext(v)
J = ufl.derivative(F, Du, u_hat)
J_expanded = ufl.algorithms.expand_derivatives(J)
F_replaced, F_external_operators = replace_external_operators(F)
J_replaced, J_external_operators = replace_external_operators(J_expanded)
F_form = fem.form(F_replaced)
J_form = fem.form(J_replaced)
Variables initialization and compilation#
Before solving the problem we have to initialize values of the stiffness matrix, as it requires for the system assembling. During the first loading step, we expect an elastic response only, so it’s enough to solve the constitutive equations for a relatively small displacement field at each Gauss point. This results in initializing the consistent tangent moduli with elastic ones.
Du.x.array[:] = 1.0
sigma_n.x.array[:] = 0.0
evaluated_operands = evaluate_operands(F_external_operators)
_ = evaluate_external_operators(J_external_operators, evaluated_operands)
Inner Newton summary:
Unique number of iterations: [1]
Counts of unique number of iterations: [15000]
Maximum f: -2.2109628558449494
Maximum residual: 0.0
Solving the problem#
Summing up, we apply the Newton method to solve the main weak problem. On each iteration of the main Newton loop, we solve elastoplastic constitutive equations by using the second (inner) Newton method at each Gauss point. Thanks to the framework and the JAX library, the final interface is general enough to be applied to other plasticity models.
external_operator_problem = LinearProblem(J_replaced, -F_replaced, Du, bcs=bcs)
x_point = np.array([[0, H, 0]])
cells, points_on_process = find_cell_by_point(domain, x_point)
# parameters of the manual Newton method
max_iterations, relative_tolerance = 200, 1e-8
load_steps_1 = np.linspace(2, 21, 40)
load_steps_2 = np.linspace(21, 22.75, 20)[1:]
load_steps = np.concatenate([load_steps_1, load_steps_2])
num_increments = len(load_steps)
results = np.zeros((num_increments + 1, 2))
for i, load in enumerate(load_steps):
q.value = load * np.array([0, -gamma])
external_operator_problem.assemble_vector()
residual_0 = external_operator_problem.b.norm()
residual = residual_0
Du.x.array[:] = 0
if MPI.COMM_WORLD.rank == 0:
print(f"Load increment #{i}, load: {load}, initial residual: {residual_0}")
for iteration in range(0, max_iterations):
if residual / residual_0 < relative_tolerance:
break
if MPI.COMM_WORLD.rank == 0:
print(f"\tOuter Newton iteration #{iteration}")
external_operator_problem.assemble_matrix()
external_operator_problem.solve(du)
Du.x.petsc_vec.axpy(1.0, du.x.petsc_vec)
Du.x.scatter_forward()
evaluated_operands = evaluate_operands(F_external_operators)
((_, sigma_new),) = evaluate_external_operators(J_external_operators, evaluated_operands)
# Direct access to the external operator values
sigma.ref_coefficient.x.array[:] = sigma_new
external_operator_problem.assemble_vector()
residual = external_operator_problem.b.norm()
if MPI.COMM_WORLD.rank == 0:
print(f"\tResidual: {residual}\n")
u.x.petsc_vec.axpy(1.0, Du.x.petsc_vec)
u.x.scatter_forward()
sigma_n.x.array[:] = sigma.ref_coefficient.x.array
if len(points_on_process) > 0:
results[i + 1, :] = (-u.eval(points_on_process, cells)[0], load)
print(f"Slope stability factor: {-q.value[-1]*H/c}")
Load increment #0, load: 2.0, initial residual: 0.027573900703382316
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1]
Counts of unique number of iterations: [15000]
Maximum f: -0.2983932974714918
Maximum residual: 0.0
Residual: 7.890919449890783e-14
Load increment #1, load: 2.4871794871794872, initial residual: 0.006716719402111263
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3]
Counts of unique number of iterations: [14999 1]
Maximum f: 0.28795356169797115
Maximum residual: 1.6069532994136943e-15
Residual: 0.002218734438292365
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 4]
Counts of unique number of iterations: [14999 1]
Maximum f: 0.4490497372726332
Maximum residual: 4.74491267375125e-16
Residual: 8.901387764604577e-05
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 4]
Counts of unique number of iterations: [14999 1]
Maximum f: 0.4526047639992705
Maximum residual: 5.66795677352112e-16
Residual: 8.72870007368659e-08
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 4]
Counts of unique number of iterations: [14999 1]
Maximum f: 0.4526085284802486
Maximum residual: 9.23344865209648e-16
Residual: 8.981949346521205e-14
Load increment #2, load: 2.9743589743589745, initial residual: 0.0067167194021058516
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4]
Counts of unique number of iterations: [14998 1 1]
Maximum f: 0.959060060256649
Maximum residual: 1.7759412808265995e-11
Residual: 0.004802356196088396
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 4]
Counts of unique number of iterations: [14998 2]
Maximum f: 1.1348741666216449
Maximum residual: 4.526797389797801e-16
Residual: 9.211661510543003e-05
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 4]
Counts of unique number of iterations: [14998 2]
Maximum f: 1.1350924181953492
Maximum residual: 9.278484370861693e-16
Residual: 1.693176317199017e-08
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 4]
Counts of unique number of iterations: [14998 2]
Maximum f: 1.1350931611448787
Maximum residual: 7.563076050675473e-16
Residual: 6.291070770855705e-15
Load increment #3, load: 3.4615384615384617, initial residual: 0.0067167194021059504
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 4 5]
Counts of unique number of iterations: [14996 3 1]
Maximum f: 1.2094005593143735
Maximum residual: 2.1599919653272044e-15
Residual: 0.004577763989326799
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14995 1 3 1]
Maximum f: 1.3971321181728666
Maximum residual: 4.523450768197638e-12
Residual: 0.0008492027216157221
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14995 1 3 1]
Maximum f: 1.4248006636524875
Maximum residual: 4.312760339536258e-14
Residual: 5.8039785871004464e-06
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14995 1 3 1]
Maximum f: 1.4248654126369007
Maximum residual: 4.778100226722301e-14
Residual: 1.7549459842413692e-10
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14995 1 3 1]
Maximum f: 1.4248654164118402
Maximum residual: 4.710855903239195e-14
Residual: 6.115624526774481e-15
Load increment #4, load: 3.948717948717949, initial residual: 0.006716719402106029
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14992 2 4 2]
Maximum f: 1.6622114419616891
Maximum residual: 2.284009519320461e-11
Residual: 0.005991367307375562
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 4 5 6]
Counts of unique number of iterations: [14993 5 1 1]
Maximum f: 1.9712452060954653
Maximum residual: 1.9719683348635102e-14
Residual: 0.0008411326742961785
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 4 5 6]
Counts of unique number of iterations: [14993 5 1 1]
Maximum f: 1.9669201227931743
Maximum residual: 2.7998841883107362e-14
Residual: 1.0331906341028766e-06
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 4 5 6]
Counts of unique number of iterations: [14993 5 1 1]
Maximum f: 1.9669904350357945
Maximum residual: 2.542481932384309e-14
Residual: 6.564572860183445e-12
Load increment #5, load: 4.435897435897436, initial residual: 0.006716719402089759
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14988 3 7 1 1]
Maximum f: 2.1624454001146183
Maximum residual: 9.216681243241093e-11
Residual: 0.0063871311640514685
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14986 2 10 2]
Maximum f: 2.2145902632058116
Maximum residual: 9.457400774077234e-11
Residual: 0.0018311090776529243
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14986 2 10 2]
Maximum f: 2.247831186097726
Maximum residual: 7.939428618327782e-11
Residual: 6.1860511095659675e-06
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14986 2 10 2]
Maximum f: 2.247847319546333
Maximum residual: 7.941305609091945e-11
Residual: 1.1402764366337778e-10
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14986 2 10 2]
Maximum f: 2.247847321965589
Maximum residual: 7.94128946420124e-11
Residual: 6.311161812942645e-15
Load increment #6, load: 4.923076923076923, initial residual: 0.006716719402105907
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14980 4 13 3]
Maximum f: 2.412340741822826
Maximum residual: 1.9281690307661182e-11
Residual: 0.007208784346729728
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14978 4 15 3]
Maximum f: 2.6373092115923655
Maximum residual: 3.947193023626819e-11
Residual: 0.0010890919985447423
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14978 3 17 2]
Maximum f: 2.657703882653005
Maximum residual: 7.343964781767663e-11
Residual: 1.2600498418665459e-05
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14978 3 17 2]
Maximum f: 2.657821730601326
Maximum residual: 7.345380461870128e-11
Residual: 1.2853238681401728e-09
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14978 3 17 2]
Maximum f: 2.6578217428611954
Maximum residual: 7.345313605854967e-11
Residual: 6.215559826041168e-15
Load increment #7, load: 5.410256410256411, initial residual: 0.006716719402105902
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14971 4 20 5]
Maximum f: 2.8972284361943648
Maximum residual: 1.5932847856711257e-10
Residual: 0.007185163108330384
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14970 4 20 6]
Maximum f: 3.074460151265438
Maximum residual: 1.4841855612405854e-10
Residual: 0.003635385508342228
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14969 4 21 6]
Maximum f: 3.1068353261265877
Maximum residual: 1.6963349703642361e-10
Residual: 0.0006614649205114514
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14969 5 20 6]
Maximum f: 3.111336688258294
Maximum residual: 1.751536628153783e-10
Residual: 2.3272859544284286e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14969 4 21 6]
Maximum f: 3.1113629314934976
Maximum residual: 1.751781846454831e-10
Residual: 1.6043351964469255e-11
Load increment #8, load: 5.897435897435898, initial residual: 0.00671671940209461
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14956 16 25 3]
Maximum f: 3.3170712973542007
Maximum residual: 1.73745936022647e-10
Residual: 0.008492114295014659
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14957 9 27 7]
Maximum f: 3.6710312133149317
Maximum residual: 1.311813565498907e-10
Residual: 0.005488364080386103
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14956 9 28 7]
Maximum f: 3.6914352462087643
Maximum residual: 2.349449759274743e-10
Residual: 8.319437470582816e-05
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14956 9 28 7]
Maximum f: 3.6914214031303962
Maximum residual: 2.575476364059704e-10
Residual: 1.404834945506049e-07
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14956 9 28 7]
Maximum f: 3.6914216019955455
Maximum residual: 2.575471385257117e-10
Residual: 1.5064168133037005e-13
Load increment #9, load: 6.384615384615384, initial residual: 0.006716719402106336
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14936 22 35 7]
Maximum f: 4.045554233015363
Maximum residual: 3.987995294010693e-11
Residual: 0.008836812867953047
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14935 21 38 5 1]
Maximum f: 4.316638571781837
Maximum residual: 3.0069052121590976e-10
Residual: 0.010718894285201485
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14934 21 39 5 1]
Maximum f: 4.355314382789103
Maximum residual: 3.109200840857651e-10
Residual: 0.0002441838471887533
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14934 21 39 5 1]
Maximum f: 4.356975910983897
Maximum residual: 3.170287487032596e-10
Residual: 1.3661176406774217e-07
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14934 21 39 5 1]
Maximum f: 4.35697629965423
Maximum residual: 3.1703029219510236e-10
Residual: 5.149272482380523e-14
Load increment #10, load: 6.871794871794871, initial residual: 0.0067167194021057934
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14915 33 44 8]
Maximum f: 4.738994089491671
Maximum residual: 2.1753344521763023e-10
Residual: 0.008959963113172967
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14915 28 47 10]
Maximum f: 4.994258511340817
Maximum residual: 7.209303188255585e-11
Residual: 0.011397174281186211
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14913 30 47 10]
Maximum f: 5.018175040325893
Maximum residual: 8.131241815887432e-11
Residual: 0.00034539497630206546
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14913 30 47 10]
Maximum f: 5.021313078557187
Maximum residual: 8.056295300680725e-11
Residual: 2.2738134262025453e-07
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14913 30 47 10]
Maximum f: 5.021314344097126
Maximum residual: 8.056312787730837e-11
Residual: 1.3677781358889237e-13
Load increment #11, load: 7.358974358974359, initial residual: 0.006716719402106081
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14895 1 39 56 9]
Maximum f: 5.425401278773759
Maximum residual: 1.3371143159723552e-10
Residual: 0.008873442816314499
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14892 39 60 9]
Maximum f: 5.660279604155246
Maximum residual: 3.049244742487409e-10
Residual: 0.0015471905099869799
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14892 39 60 9]
Maximum f: 5.6778106598755205
Maximum residual: 3.202075274385731e-10
Residual: 1.0838415950050226e-05
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14892 39 60 9]
Maximum f: 5.677921603622375
Maximum residual: 3.20125841523144e-10
Residual: 3.9821681987266934e-10
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14892 39 60 9]
Maximum f: 5.677921607038627
Maximum residual: 3.2012576635724396e-10
Residual: 6.768042292143486e-15
Load increment #12, load: 7.846153846153846, initial residual: 0.006716719402105904
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14876 46 70 8]
Maximum f: 6.049350890460289
Maximum residual: 6.874724052290696e-10
Residual: 0.009096351314687754
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14872 45 74 9]
Maximum f: 6.239529353869511
Maximum residual: 4.087989408182388e-10
Residual: 0.0016211998652745385
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14871 44 77 8]
Maximum f: 6.25076803298351
Maximum residual: 4.477617981359121e-10
Residual: 0.0001560318306305226
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14871 44 77 8]
Maximum f: 6.250264936882839
Maximum residual: 4.6403048773060224e-10
Residual: 1.0783414271764713e-07
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14871 44 77 8]
Maximum f: 6.250266601223057
Maximum residual: 4.6403632351628526e-10
Residual: 2.7402163026108637e-14
Load increment #13, load: 8.333333333333332, initial residual: 0.006716719402105762
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14856 54 82 8]
Maximum f: 6.585637001276497
Maximum residual: 3.090222282294581e-10
Residual: 0.009007878917959499
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14855 51 83 11]
Maximum f: 6.755125612945211
Maximum residual: 4.649418472520499e-10
Residual: 0.0012749818287204335
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14853 53 83 11]
Maximum f: 6.765747785088715
Maximum residual: 4.664596923508608e-10
Residual: 0.00030322429329111725
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14853 53 83 11]
Maximum f: 6.76707137611937
Maximum residual: 4.6559541898992416e-10
Residual: 1.489896642179165e-07
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14853 53 83 11]
Maximum f: 6.767071956213789
Maximum residual: 4.655959223750781e-10
Residual: 6.224191646409628e-14
Load increment #14, load: 8.820512820512821, initial residual: 0.006716719402106516
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14840 62 94 4]
Maximum f: 7.113663502374457
Maximum residual: 4.240201862913906e-10
Residual: 0.008041984424249974
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14836 62 98 4]
Maximum f: 7.25296041059803
Maximum residual: 4.537294457934902e-10
Residual: 0.0013241251663798853
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14834 64 98 4]
Maximum f: 7.257375794857158
Maximum residual: 6.022015489259446e-10
Residual: 7.755831879993391e-05
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14834 64 98 4]
Maximum f: 7.257098271755524
Maximum residual: 6.121699829916764e-10
Residual: 2.3409396873000134e-08
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14834 64 98 4]
Maximum f: 7.257098617903164
Maximum residual: 6.121838514040751e-10
Residual: 7.329576817357213e-15
Load increment #15, load: 9.307692307692307, initial residual: 0.00671671940210589
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14823 72 100 5]
Maximum f: 7.58041627942597
Maximum residual: 4.3583780272924964e-10
Residual: 0.006820691030113568
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14820 71 104 5]
Maximum f: 7.6939920654095495
Maximum residual: 4.272594756845077e-10
Residual: 0.0004652039135065601
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14820 71 104 5]
Maximum f: 7.6958712038617545
Maximum residual: 4.500866160302736e-10
Residual: 5.193518789243318e-07
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14820 71 104 5]
Maximum f: 7.695876907322399
Maximum residual: 4.5007848603537275e-10
Residual: 7.659269634626732e-13
Load increment #16, load: 9.794871794871796, initial residual: 0.006716719402108467
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14808 90 97 5]
Maximum f: 7.99050966817293
Maximum residual: 5.013465405904206e-10
Residual: 0.006701736965509444
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14805 87 103 5]
Maximum f: 8.089550459713337
Maximum residual: 5.140883706623874e-10
Residual: 0.0008807439219532116
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14805 88 102 5]
Maximum f: 8.091632210151511
Maximum residual: 5.259422770664863e-10
Residual: 2.8174946872392068e-06
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14805 88 102 5]
Maximum f: 8.091634648275788
Maximum residual: 5.259424452988232e-10
Residual: 3.6270020933263514e-11
Load increment #17, load: 10.282051282051281, initial residual: 0.006716719402117765
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14795 112 85 8]
Maximum f: 8.358501355606794
Maximum residual: 5.712738175174098e-10
Residual: 0.0063306127750015345
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14793 113 86 8]
Maximum f: 8.437903718526334
Maximum residual: 5.980822538472252e-10
Residual: 0.00045101679349716207
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14793 113 86 8]
Maximum f: 8.44003484251495
Maximum residual: 5.98215613283621e-10
Residual: 6.877522470581463e-07
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14793 113 86 8]
Maximum f: 8.440036786591405
Maximum residual: 5.982155862537371e-10
Residual: 1.6053404660618207e-12
Load increment #18, load: 10.769230769230768, initial residual: 0.006716719402110631
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14780 135 78 7]
Maximum f: 8.68456502127428
Maximum residual: 5.552947981106763e-10
Residual: 0.006321576427286919
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14779 1 131 82 7]
Maximum f: 8.752245478545689
Maximum residual: 5.661125049159691e-10
Residual: 0.0006104928700975985
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14778 1 132 82 7]
Maximum f: 8.7529350521491
Maximum residual: 5.662446230508161e-10
Residual: 0.00023235849305208804
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14778 1 132 82 7]
Maximum f: 8.753156784434015
Maximum residual: 5.664745903123164e-10
Residual: 2.9780061029475124e-07
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14778 1 132 82 7]
Maximum f: 8.753157009998258
Maximum residual: 5.664766281087768e-10
Residual: 3.8016844821466933e-13
Load increment #19, load: 11.256410256410255, initial residual: 0.006716719402108031
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14765 151 78 5 1]
Maximum f: 8.958294424841467
Maximum residual: 7.238628227290251e-10
Residual: 0.008132000241176851
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14762 152 80 5 1]
Maximum f: 8.998791074465823
Maximum residual: 7.227711446385966e-10
Residual: 0.001997392238883473
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14762 152 80 5 1]
Maximum f: 9.005204370557509
Maximum residual: 7.290349944368096e-10
Residual: 2.52599622998144e-05
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14762 152 80 5 1]
Maximum f: 9.005208512201829
Maximum residual: 7.290424660974518e-10
Residual: 2.4448542002402695e-09
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14762 152 80 5 1]
Maximum f: 9.005208513681765
Maximum residual: 7.290401961831911e-10
Residual: 7.70071218194023e-15
Load increment #20, load: 11.743589743589743, initial residual: 0.006716719402105775
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14746 175 74 5]
Maximum f: 9.133896594623621
Maximum residual: 7.588024190511681e-10
Residual: 0.008896728090045757
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14745 174 76 5]
Maximum f: 9.192693190502789
Maximum residual: 8.056791555890222e-10
Residual: 0.0038934284784811137
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14745 174 76 5]
Maximum f: 9.19757041344616
Maximum residual: 8.358968531175626e-10
Residual: 3.796847475201592e-05
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14745 174 76 5]
Maximum f: 9.197584052522377
Maximum residual: 8.360896363124227e-10
Residual: 4.2398571608009855e-09
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14745 174 76 5]
Maximum f: 9.197584055106221
Maximum residual: 8.360761170549043e-10
Residual: 7.937564969278366e-15
Load increment #21, load: 12.23076923076923, initial residual: 0.006716719402105997
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14728 199 68 4 1]
Maximum f: 9.309318026977646
Maximum residual: 7.745733179621374e-10
Residual: 0.009216976204473903
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14727 196 71 4 2]
Maximum f: 9.372210255858127
Maximum residual: 6.614291898767247e-10
Residual: 0.005677562280785258
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14728 196 70 4 2]
Maximum f: 9.375041989619428
Maximum residual: 6.643537217422253e-10
Residual: 0.00019877343896580445
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14728 196 70 4 2]
Maximum f: 9.37511531688497
Maximum residual: 6.644318148463891e-10
Residual: 7.633720770281903e-09
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14728 196 70 4 2]
Maximum f: 9.375115318687154
Maximum residual: 6.644304468516605e-10
Residual: 7.98331332399425e-15
Load increment #22, load: 12.717948717948717, initial residual: 0.0067167194021062184
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14703 230 63 4]
Maximum f: 9.631734472003261
Maximum residual: 9.004495644739933e-10
Residual: 0.010103758517920908
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14703 227 66 4]
Maximum f: 10.266067965825984
Maximum residual: 6.579958639939529e-10
Residual: 0.005635378524062774
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14702 227 67 4]
Maximum f: 10.294537007242775
Maximum residual: 6.625034045463842e-10
Residual: 0.0006453068279120127
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14703 226 67 4]
Maximum f: 10.305089259960004
Maximum residual: 6.634648277637736e-10
Residual: 2.3771921489821883e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14703 226 67 4]
Maximum f: 10.305140011501196
Maximum residual: 6.634647552212982e-10
Residual: 3.204867000788119e-12
Load increment #23, load: 13.205128205128204, initial residual: 0.006716719402092674
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14669 269 58 3 1]
Maximum f: 11.025940505751029
Maximum residual: 1.0175534866991814e-09
Residual: 0.010006180949859491
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14666 271 59 3 1]
Maximum f: 12.212967525109589
Maximum residual: 4.845631986426588e-10
Residual: 0.0061385342969422834
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14665 272 59 3 1]
Maximum f: 12.289198016073618
Maximum residual: 4.876787289465884e-10
Residual: 0.00044609546114351896
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14666 271 59 3 1]
Maximum f: 12.292335568048466
Maximum residual: 4.879192891750546e-10
Residual: 2.9181610091638813e-05
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14666 271 59 3 1]
Maximum f: 12.292564859874892
Maximum residual: 4.87925770235352e-10
Residual: 9.410641793846815e-10
Outer Newton iteration #5
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [14666 271 59 3 1]
Maximum f: 12.292564858474789
Maximum residual: 4.879259072840858e-10
Residual: 8.292064960245494e-15
Load increment #24, load: 13.692307692307692, initial residual: 0.006716719402105967
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14626 1 316 52 5]
Maximum f: 13.752178237997418
Maximum residual: 9.009687888385508e-10
Residual: 0.009288088168082454
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14628 1 311 55 5]
Maximum f: 14.526046465190406
Maximum residual: 1.1118740115103616e-09
Residual: 0.01748781673753544
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14628 1 310 56 5]
Maximum f: 14.630545455974252
Maximum residual: 5.60616468208064e-10
Residual: 0.0011315237281224913
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14628 1 310 56 5]
Maximum f: 14.644482371673819
Maximum residual: 5.609460003864369e-10
Residual: 1.407071390247005e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14628 1 310 56 5]
Maximum f: 14.644487569973952
Maximum residual: 5.609465923503495e-10
Residual: 3.956057118756387e-12
Load increment #25, load: 14.179487179487179, initial residual: 0.006716719402093062
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14585 358 52 5]
Maximum f: 15.668897835243778
Maximum residual: 5.453032629910085e-10
Residual: 0.01020272827916171
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14585 358 53 4]
Maximum f: 16.897476113500414
Maximum residual: 9.014246075011788e-10
Residual: 0.018204880744767896
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14586 1 356 53 4]
Maximum f: 17.005942469911133
Maximum residual: 9.296743108920492e-10
Residual: 0.0017665245952441415
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14586 1 356 53 4]
Maximum f: 17.010760706455805
Maximum residual: 9.316588449987665e-10
Residual: 2.4867469674712053e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14586 1 356 53 4]
Maximum f: 17.01075783454806
Maximum residual: 9.316553741272862e-10
Residual: 1.1558233726990843e-11
Load increment #26, load: 14.666666666666666, initial residual: 0.006716719402090535
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14537 407 54 2]
Maximum f: 18.392943468550488
Maximum residual: 4.929875170184392e-10
Residual: 0.010739219690748508
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14537 1 409 51 2]
Maximum f: 19.448449832009402
Maximum residual: 8.562163022279948e-10
Residual: 0.0217933127661377
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14537 1 408 52 2]
Maximum f: 19.59381838166779
Maximum residual: 6.971880626091294e-10
Residual: 4.8782826483654025e-05
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14537 1 408 52 2]
Maximum f: 19.593925369807053
Maximum residual: 6.966564911098194e-10
Residual: 6.694631074622378e-09
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14537 1 408 52 2]
Maximum f: 19.593925341451143
Maximum residual: 6.966587236269051e-10
Residual: 8.901913864258566e-15
Load increment #27, load: 15.153846153846153, initial residual: 0.006716719402105616
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14480 2 463 53 2]
Maximum f: 20.96674904419338
Maximum residual: 5.524816866263788e-10
Residual: 0.010417054367107544
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14484 3 457 53 3]
Maximum f: 22.221433151368622
Maximum residual: 1.2519566051086383e-09
Residual: 0.0263233526704633
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14481 2 463 51 3]
Maximum f: 22.41046695631673
Maximum residual: 1.193688987740655e-09
Residual: 0.0009187005626425985
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14481 3 463 50 3]
Maximum f: 22.405318497174452
Maximum residual: 1.1898570344001849e-09
Residual: 6.865470701334167e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14481 3 463 50 3]
Maximum f: 22.405274561032304
Maximum residual: 1.1898310708047024e-09
Residual: 2.7254283617801256e-10
Outer Newton iteration #5
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14481 3 463 50 3]
Maximum f: 22.405274558653705
Maximum residual: 1.1898327925901724e-09
Residual: 9.24943173106498e-15
Load increment #28, load: 15.64102564102564, initial residual: 0.006716719402106811
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5 6]
Counts of unique number of iterations: [14413 1 534 50 1 1]
Maximum f: 24.305556090508148
Maximum residual: 7.245119011666657e-10
Residual: 0.010984385790507681
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 6]
Counts of unique number of iterations: [14418 2 525 53 2]
Maximum f: 25.37444834249622
Maximum residual: 7.415107687445929e-10
Residual: 0.02382245428860332
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 6]
Counts of unique number of iterations: [14415 1 531 51 2]
Maximum f: 25.524100278581628
Maximum residual: 7.360521747922634e-10
Residual: 0.0006321108883439714
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 6]
Counts of unique number of iterations: [14415 1 531 51 2]
Maximum f: 25.534937262325332
Maximum residual: 7.426256324308136e-10
Residual: 1.7407450784632632e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 6]
Counts of unique number of iterations: [14415 1 531 51 2]
Maximum f: 25.53494655259069
Maximum residual: 7.426369154619653e-10
Residual: 1.4317163968530303e-11
Load increment #29, load: 16.128205128205128, initial residual: 0.006716719402092309
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14353 595 49 3]
Maximum f: 27.388219241620916
Maximum residual: 1.1171455360337583e-09
Residual: 0.012201831023476982
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14356 1 588 52 3]
Maximum f: 28.584558517236882
Maximum residual: 8.951279335909449e-10
Residual: 0.01978884561978989
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14353 1 592 51 3]
Maximum f: 28.66830999695858
Maximum residual: 9.048896009968985e-10
Residual: 0.0009708591699704159
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14353 593 51 3]
Maximum f: 28.666671779503833
Maximum residual: 9.104507142514185e-10
Residual: 8.220389578526364e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14353 593 51 3]
Maximum f: 28.666640183013357
Maximum residual: 9.104666710763999e-10
Residual: 3.342774079225019e-10
Outer Newton iteration #5
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14353 593 51 3]
Maximum f: 28.666640180949567
Maximum residual: 9.104774313731228e-10
Residual: 9.767688349230945e-15
Load increment #30, load: 16.615384615384613, initial residual: 0.006716719402105511
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14291 659 47 3]
Maximum f: 30.3391927130098
Maximum residual: 9.784813450454796e-10
Residual: 0.01478105711605393
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14283 667 47 3]
Maximum f: 31.862733719202538
Maximum residual: 1.3808055558672501e-09
Residual: 0.009732116539257358
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14281 670 46 3]
Maximum f: 32.106479915367046
Maximum residual: 1.325766598911644e-09
Residual: 0.002454155058540014
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14281 669 47 3]
Maximum f: 32.12478051590549
Maximum residual: 1.3278569092003317e-09
Residual: 1.6633409864762663e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14281 669 47 3]
Maximum f: 32.124794424982106
Maximum residual: 1.3278662028463454e-09
Residual: 5.307556350691181e-12
Load increment #31, load: 17.102564102564102, initial residual: 0.006716719402101599
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14206 1 743 46 4]
Maximum f: 34.25259433815284
Maximum residual: 6.978415824979157e-10
Residual: 0.012973816245009347
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14197 2 752 44 5]
Maximum f: 35.493859474729504
Maximum residual: 9.938831281782743e-10
Residual: 0.013085384417730949
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14194 1 757 43 5]
Maximum f: 35.67214269181068
Maximum residual: 1.083607682794471e-09
Residual: 0.00047677811876405536
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14194 1 758 42 5]
Maximum f: 35.68206047013779
Maximum residual: 1.088269045877497e-09
Residual: 5.414261404230504e-07
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14194 1 758 42 5]
Maximum f: 35.682064702451214
Maximum residual: 1.0882703100783492e-09
Residual: 1.0062689861185195e-12
Load increment #32, load: 17.58974358974359, initial residual: 0.006716719402103525
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [14109 1 843 45 2]
Maximum f: 37.82177871116257
Maximum residual: 1.808789249190159e-09
Residual: 0.013265121948815397
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14103 848 47 2]
Maximum f: 39.33636640323676
Maximum residual: 2.8117130862484794e-09
Residual: 0.01734480664235657
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14102 850 46 2]
Maximum f: 39.46098163507629
Maximum residual: 2.9418443363735676e-09
Residual: 0.002786063521334128
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14101 851 46 2]
Maximum f: 39.494698402560275
Maximum residual: 3.0329970201634423e-09
Residual: 3.1504884435841264e-05
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14101 851 46 2]
Maximum f: 39.494935809990665
Maximum residual: 3.0337386051270403e-09
Residual: 6.00411686489015e-09
Outer Newton iteration #5
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [14101 851 46 2]
Maximum f: 39.49493582681761
Maximum residual: 3.033734001770251e-09
Residual: 1.1368296277092335e-14
Load increment #33, load: 18.076923076923077, initial residual: 0.00671671940210664
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5 6]
Counts of unique number of iterations: [14007 1 944 45 2 1]
Maximum f: 41.909820887293506
Maximum residual: 2.6755180982912257e-09
Residual: 0.013883417990777544
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5 6]
Counts of unique number of iterations: [13994 1 948 53 3 1]
Maximum f: 43.30582535963698
Maximum residual: 4.969424153365426e-10
Residual: 0.013918974861119406
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [13991 953 51 4 1]
Maximum f: 43.46183448724685
Maximum residual: 3.4008510125659406e-10
Residual: 0.0006913086148759544
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [13991 953 51 4 1]
Maximum f: 43.47158167047849
Maximum residual: 3.4270678108275825e-10
Residual: 1.31120114864905e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [13991 953 51 4 1]
Maximum f: 43.471584920436754
Maximum residual: 3.4270290917925527e-10
Residual: 3.627261085127511e-12
Load increment #34, load: 18.564102564102562, initial residual: 0.006716719402095659
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13902 1038 58 2]
Maximum f: 45.91480430149897
Maximum residual: 2.4304431415047483e-09
Residual: 0.01381553512146383
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13893 1048 58 1]
Maximum f: 47.624646296211225
Maximum residual: 1.2653203412513818e-09
Residual: 0.01610609449294831
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13889 1052 58 1]
Maximum f: 47.781394618393875
Maximum residual: 6.831015994437234e-10
Residual: 0.0007718361866142185
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13888 1053 58 1]
Maximum f: 47.79394062638336
Maximum residual: 6.903306999643218e-10
Residual: 1.9206165864719544e-05
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13888 1053 58 1]
Maximum f: 47.793970756076355
Maximum residual: 6.90310704929693e-10
Residual: 4.1750719303444733e-10
Outer Newton iteration #5
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13888 1053 58 1]
Maximum f: 47.79397075829508
Maximum residual: 6.903112059680749e-10
Residual: 1.1863605400930496e-14
Load increment #35, load: 19.05128205128205, initial residual: 0.006716719402106133
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5 6]
Counts of unique number of iterations: [13785 1 1148 61 4 1]
Maximum f: 50.14385631632916
Maximum residual: 1.5157200017471618e-09
Residual: 0.015919379757795126
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [13779 1154 62 4 1]
Maximum f: 52.23835692667192
Maximum residual: 1.6622881621025106e-09
Residual: 0.016147744791352343
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [13779 1152 65 3 1]
Maximum f: 52.44076497459371
Maximum residual: 1.776333851293984e-09
Residual: 0.0013833112793794212
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [13778 1153 65 3 1]
Maximum f: 52.45168162180874
Maximum residual: 1.7871770307961866e-09
Residual: 4.661542284659411e-05
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [13778 1153 65 3 1]
Maximum f: 52.45212784374142
Maximum residual: 1.7878879274289336e-09
Residual: 1.5900780213460463e-08
Outer Newton iteration #5
Inner Newton summary:
Unique number of iterations: [1 3 4 5 6]
Counts of unique number of iterations: [13778 1153 65 3 1]
Maximum f: 52.452127946536066
Maximum residual: 1.7878846245888235e-09
Residual: 1.2671445931207544e-14
Load increment #36, load: 19.538461538461537, initial residual: 0.006716719402105679
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13669 4 1252 70 5]
Maximum f: 55.567850084860176
Maximum residual: 1.5158017729600783e-09
Residual: 0.01648733299209133
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13653 1 1267 72 7]
Maximum f: 57.520674863876835
Maximum residual: 2.0360913781816354e-09
Residual: 0.009555160880257305
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13649 1 1271 72 7]
Maximum f: 57.732233406463564
Maximum residual: 2.276939297308774e-09
Residual: 0.0012033324423391873
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13649 1 1271 72 7]
Maximum f: 57.7498544942572
Maximum residual: 2.31029178844454e-09
Residual: 4.145697724897417e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13649 1 1271 72 7]
Maximum f: 57.74986829134545
Maximum residual: 2.3103093135202066e-09
Residual: 4.7209344668098317e-11
Load increment #37, load: 20.025641025641026, initial residual: 0.00671671940196218
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13524 1396 76 4]
Maximum f: 61.06991012598089
Maximum residual: 1.0419547980406697e-09
Residual: 0.01542877271383975
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13507 3 1391 94 5]
Maximum f: 63.56468035108713
Maximum residual: 2.297434134061737e-09
Residual: 0.014602468246210643
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13506 2 1393 94 5]
Maximum f: 63.79127578757072
Maximum residual: 2.4736336179417338e-09
Residual: 0.00215200848924207
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13505 1 1395 94 5]
Maximum f: 63.80501943470964
Maximum residual: 2.474690416253466e-09
Residual: 9.969640240656925e-05
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13505 1 1395 94 5]
Maximum f: 63.8064502879536
Maximum residual: 2.47528087992554e-09
Residual: 9.21988530170634e-08
Outer Newton iteration #5
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13505 1 1395 94 5]
Maximum f: 63.8064507336262
Maximum residual: 2.475281634210043e-09
Residual: 3.290309010559536e-14
Load increment #38, load: 20.51282051282051, initial residual: 0.006716719402106353
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13393 1 1501 101 4]
Maximum f: 67.75666077388834
Maximum residual: 8.892870228150307e-09
Residual: 0.01751742965341938
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13365 1516 115 4]
Maximum f: 70.58578065154649
Maximum residual: 1.4855313178726592e-09
Residual: 0.015748989462208554
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13365 1516 115 4]
Maximum f: 70.93025143785108
Maximum residual: 1.5953787472205064e-09
Residual: 0.000516986539502159
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13364 1517 115 4]
Maximum f: 70.93404931644474
Maximum residual: 1.5963803993495142e-09
Residual: 1.490332273344886e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 3 4 5]
Counts of unique number of iterations: [13364 1517 115 4]
Maximum f: 70.93406547628874
Maximum residual: 1.5963962464711063e-09
Residual: 1.2099815503055078e-11
Load increment #39, load: 21.0, initial residual: 0.006716719402106207
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13215 1 1653 124 7]
Maximum f: 75.39348146497682
Maximum residual: 2.7200912417826727e-09
Residual: 0.01837162002521085
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [13194 1 1667 130 8]
Maximum f: 79.1519989054704
Maximum residual: 5.528808783550887e-09
Residual: 0.017161964830256334
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5 6]
Counts of unique number of iterations: [13191 3 1668 130 7 1]
Maximum f: 79.58593312017605
Maximum residual: 6.539158263480048e-09
Residual: 0.0013369309025360297
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5 6]
Counts of unique number of iterations: [13191 2 1669 130 7 1]
Maximum f: 79.6099646724377
Maximum residual: 6.541417192423762e-09
Residual: 2.920964415354603e-06
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5 6]
Counts of unique number of iterations: [13191 2 1669 130 7 1]
Maximum f: 79.6099757401031
Maximum residual: 6.541350490563634e-09
Residual: 3.630192208671106e-11
Load increment #40, load: 21.092105263157894, initial residual: 0.0012698506902034947
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13165 21 1795 19]
Maximum f: 16.08975786803034
Maximum residual: 1.5615146502863196e-10
Residual: 0.0031321320109657545
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13163 27 1806 4]
Maximum f: 16.10841316642004
Maximum residual: 2.3868757553000546e-10
Residual: 0.00013097513646595602
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13163 27 1806 4]
Maximum f: 16.111750859726392
Maximum residual: 2.4548461882246814e-10
Residual: 9.146392777926918e-08
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13163 27 1806 4]
Maximum f: 16.111751899955934
Maximum residual: 2.4548539806946936e-10
Residual: 3.1013134252967853e-14
Load increment #41, load: 21.18421052631579, initial residual: 0.001269850690287741
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13125 31 1841 3]
Maximum f: 16.28406346683637
Maximum residual: 2.461194646909824e-10
Residual: 0.0021467155268750926
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13122 28 1847 3]
Maximum f: 16.49460668053909
Maximum residual: 2.5563213017639554e-10
Residual: 8.480982743983298e-05
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13122 28 1847 3]
Maximum f: 16.496151369432415
Maximum residual: 2.5313063525550913e-10
Residual: 3.10333266608704e-08
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13122 28 1847 3]
Maximum f: 16.496151886790926
Maximum residual: 2.531276339288553e-10
Residual: 6.23343484070837e-15
Load increment #42, load: 21.276315789473685, initial residual: 0.0012698506902872947
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13084 31 1883 2]
Maximum f: 16.788419796333756
Maximum residual: 1.9126257404353311e-10
Residual: 0.002799391161568597
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13081 33 1884 2]
Maximum f: 17.034440423380282
Maximum residual: 1.792912373663637e-10
Residual: 0.00043717722019198104
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13081 33 1884 2]
Maximum f: 17.041643481924492
Maximum residual: 2.335616771412466e-10
Residual: 1.7721777126625083e-06
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13081 33 1884 2]
Maximum f: 17.041660096410972
Maximum residual: 2.3360684847395073e-10
Residual: 1.127712020673048e-11
Load increment #43, load: 21.36842105263158, initial residual: 0.001269850690298948
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13049 40 1909 2]
Maximum f: 17.278623558566498
Maximum residual: 2.417327114256076e-10
Residual: 0.0025934355703301436
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13049 36 1913 2]
Maximum f: 17.490395192093285
Maximum residual: 3.848908769086853e-10
Residual: 0.0007190854199344023
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13049 36 1913 2]
Maximum f: 17.496370578262987
Maximum residual: 1.8229511923598908e-10
Residual: 4.3775839130928303e-07
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13049 36 1913 2]
Maximum f: 17.496373236474987
Maximum residual: 1.8229718120265876e-10
Residual: 4.709769915609418e-13
Load increment #44, load: 21.460526315789473, initial residual: 0.0012698506902881048
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13013 38 1947 2]
Maximum f: 17.714696002614733
Maximum residual: 3.262502708104543e-10
Residual: 0.002701869108258954
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13011 39 1948 2]
Maximum f: 17.965123605797647
Maximum residual: 2.8815665912207747e-10
Residual: 0.0004216453628278521
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13011 38 1949 2]
Maximum f: 17.969582107517958
Maximum residual: 2.777914905746301e-10
Residual: 9.472278112814814e-08
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [13011 38 1949 2]
Maximum f: 17.9695838688886
Maximum residual: 2.77782565679447e-10
Residual: 2.321107371458391e-14
Load increment #45, load: 21.55263157894737, initial residual: 0.001269850690288401
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12971 39 1989 1]
Maximum f: 18.277479535195035
Maximum residual: 3.720438162153813e-10
Residual: 0.00302469032701064
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12972 35 1991 2]
Maximum f: 18.49745998031136
Maximum residual: 2.853722479672918e-10
Residual: 0.0013588818808835665
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12972 35 1991 2]
Maximum f: 18.52518575789379
Maximum residual: 2.77602345620237e-10
Residual: 1.9054350811334565e-06
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12972 35 1991 2]
Maximum f: 18.525206077922945
Maximum residual: 2.775283295079526e-10
Residual: 9.808783920843275e-12
Load increment #46, load: 21.644736842105264, initial residual: 0.0012698506903203349
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12934 32 2033 1]
Maximum f: 18.864563613425286
Maximum residual: 3.9230424087875377e-10
Residual: 0.003426519411707304
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12928 36 2033 3]
Maximum f: 19.125341983196126
Maximum residual: 2.912354520697611e-10
Residual: 0.0013763884970385853
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12928 31 2038 3]
Maximum f: 19.15555009153013
Maximum residual: 2.711152605171914e-10
Residual: 1.4515798861607068e-06
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12928 31 2038 3]
Maximum f: 19.155563782593568
Maximum residual: 2.71149885612548e-10
Residual: 4.780042944604455e-12
Load increment #47, load: 21.736842105263158, initial residual: 0.0012698506902895194
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12893 37 2069 1]
Maximum f: 19.45980628178125
Maximum residual: 2.7960469915910013e-10
Residual: 0.002792620725643187
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12892 28 2079 1]
Maximum f: 19.79391716906716
Maximum residual: 2.9288185154740486e-10
Residual: 0.0008070300959354558
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12892 26 2081 1]
Maximum f: 19.804971741904655
Maximum residual: 2.089264864959735e-10
Residual: 3.955579937957151e-07
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12892 26 2081 1]
Maximum f: 19.80497255701194
Maximum residual: 2.0892757204222218e-10
Residual: 2.5017785799583337e-13
Load increment #48, load: 21.82894736842105, initial residual: 0.00126985069028734
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12863 34 2101 2]
Maximum f: 20.19353675186485
Maximum residual: 1.8707329317885239e-10
Residual: 0.0027907416726949256
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12859 36 2103 2]
Maximum f: 20.46175466364585
Maximum residual: 2.202903608383735e-10
Residual: 0.00032650169469668184
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12859 36 2103 2]
Maximum f: 20.468858529025166
Maximum residual: 3.00033130928293e-10
Residual: 5.679180809519861e-07
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12859 36 2103 2]
Maximum f: 20.468865168425893
Maximum residual: 3.000075923151847e-10
Residual: 1.6534173101173173e-12
Load increment #49, load: 21.92105263157895, initial residual: 0.0012698506902833243
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12825 38 2135 2]
Maximum f: 20.949676029049108
Maximum residual: 2.965073992040903e-10
Residual: 0.0024192662306188294
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12819 42 2137 2]
Maximum f: 21.18795309429991
Maximum residual: 4.6180415548632207e-10
Residual: 0.0010026943670315587
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12819 41 2138 2]
Maximum f: 21.221498194568618
Maximum residual: 4.001382613030954e-10
Residual: 2.7592988389517836e-06
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12819 41 2138 2]
Maximum f: 21.22153592915037
Maximum residual: 4.0003089334006846e-10
Residual: 2.686877794265977e-11
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12819 41 2138 2]
Maximum f: 21.2215359297028
Maximum residual: 4.0003249488406636e-10
Residual: 5.855829771291049e-15
Load increment #50, load: 22.013157894736842, initial residual: 0.0012698506902866077
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12782 45 2171 2]
Maximum f: 21.6783888807352
Maximum residual: 3.0516638240229204e-10
Residual: 0.0038564025789666486
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12781 35 2181 3]
Maximum f: 22.046334883954977
Maximum residual: 5.156255268887793e-10
Residual: 0.000263528690247095
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12781 35 2181 3]
Maximum f: 22.052212612207125
Maximum residual: 4.3995335057610405e-10
Residual: 8.555994573217932e-07
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12781 35 2181 3]
Maximum f: 22.052220810250237
Maximum residual: 4.3993835769178695e-10
Residual: 5.245780582215293e-12
Load increment #51, load: 22.105263157894736, initial residual: 0.0012698506902737478
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12730 40 2227 3]
Maximum f: 22.506144453055807
Maximum residual: 5.734290511693288e-10
Residual: 0.004752901407093473
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12728 37 2231 4]
Maximum f: 23.044394452951778
Maximum residual: 2.3786183255812576e-10
Residual: 0.0003002935751645465
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12728 35 2233 4]
Maximum f: 23.0574031547856
Maximum residual: 3.260009899342512e-10
Residual: 6.047314234185686e-07
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12728 35 2233 4]
Maximum f: 23.05740815912893
Maximum residual: 3.260497624681028e-10
Residual: 2.162564289448801e-12
Load increment #52, load: 22.19736842105263, initial residual: 0.0012698506902888527
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12686 38 2273 3]
Maximum f: 23.562035145481484
Maximum residual: 2.299756058125252e-10
Residual: 0.0032275242506623752
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12678 36 2283 3]
Maximum f: 24.036513056181317
Maximum residual: 3.7914450377492174e-10
Residual: 0.000594742197505832
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12678 34 2285 3]
Maximum f: 24.064533536431977
Maximum residual: 3.9250710723058666e-10
Residual: 1.0603079241373934e-06
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12678 34 2285 3]
Maximum f: 24.064552585951535
Maximum residual: 3.920740069372708e-10
Residual: 4.401271521048271e-12
Load increment #53, load: 22.289473684210527, initial residual: 0.001269850690301699
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12633 27 2336 4]
Maximum f: 24.65965926912075
Maximum residual: 2.373931046539078e-10
Residual: 0.003939452091339807
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12627 31 2337 5]
Maximum f: 25.276296226131706
Maximum residual: 5.537395407863762e-10
Residual: 0.0005439274179921635
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12627 30 2337 6]
Maximum f: 25.3100396642238
Maximum residual: 2.3360705323087356e-10
Residual: 7.356620363823689e-07
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12627 30 2337 6]
Maximum f: 25.310059505680044
Maximum residual: 2.3377635475062556e-10
Residual: 1.7540184713923856e-12
Load increment #54, load: 22.38157894736842, initial residual: 0.00126985069028829
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12580 31 2386 3]
Maximum f: 26.050593036706456
Maximum residual: 3.3220624600759926e-10
Residual: 0.005078785269065983
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12574 24 2396 6]
Maximum f: 26.784959586831427
Maximum residual: 2.776074662211976e-10
Residual: 0.00043096273393746463
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12574 25 2394 7]
Maximum f: 26.796588199799306
Maximum residual: 3.6851234314393446e-10
Residual: 1.889029200175346e-07
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12574 25 2394 7]
Maximum f: 26.79659238819626
Maximum residual: 3.6853165202234656e-10
Residual: 8.096592386611406e-14
Load increment #55, load: 22.473684210526315, initial residual: 0.0012698506902876778
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12513 32 2452 3]
Maximum f: 27.393803183785266
Maximum residual: 2.0552153399826106e-10
Residual: 0.00493451711037449
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12503 32 2453 12]
Maximum f: 28.52937815358708
Maximum residual: 8.502488721314188e-10
Residual: 0.0015749942110383417
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12504 30 2454 12]
Maximum f: 28.60246963353509
Maximum residual: 6.776913284945542e-10
Residual: 0.0003533644816955238
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12504 30 2454 12]
Maximum f: 28.604182642110597
Maximum residual: 6.848096602165291e-10
Residual: 4.712912152432788e-08
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12504 30 2454 12]
Maximum f: 28.604183173807137
Maximum residual: 6.848112593055709e-10
Residual: 1.5106086837247922e-14
Load increment #56, load: 22.56578947368421, initial residual: 0.001269850690287766
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12424 37 2528 11]
Maximum f: 30.201375466645466
Maximum residual: 4.4443679115520274e-10
Residual: 0.005528665482217568
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12418 36 2532 14]
Maximum f: 32.19777060875148
Maximum residual: 3.3235182201821935e-10
Residual: 0.0028584452408076744
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12419 33 2533 15]
Maximum f: 32.42294215005556
Maximum residual: 5.318898911869827e-10
Residual: 0.0006593251595243586
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12419 33 2533 15]
Maximum f: 32.43887954815178
Maximum residual: 6.080086776067936e-10
Residual: 7.544769289557309e-07
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12419 33 2533 15]
Maximum f: 32.438896567273254
Maximum residual: 6.081108255801936e-10
Residual: 2.6061316682184895e-12
Load increment #57, load: 22.657894736842106, initial residual: 0.0012698506902981722
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12293 32 2656 19]
Maximum f: 35.14425352228363
Maximum residual: 3.496234195834213e-10
Residual: 0.008357821604262744
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12292 24 2649 35]
Maximum f: 40.29081844578413
Maximum residual: 1.576990256040779e-09
Residual: 0.007395964036149111
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12283 23 2660 34]
Maximum f: 40.99539836523154
Maximum residual: 1.6515983389399281e-09
Residual: 0.0008981157590161343
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12282 23 2660 35]
Maximum f: 41.08028918388952
Maximum residual: 1.702001244213463e-09
Residual: 5.490401017715508e-05
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12282 23 2660 35]
Maximum f: 41.08065705097812
Maximum residual: 1.7021775649282016e-09
Residual: 2.5604401448233753e-08
Outer Newton iteration #5
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12282 23 2660 35]
Maximum f: 41.08065705549767
Maximum residual: 1.702176330003804e-09
Residual: 1.1554726810935663e-14
Load increment #58, load: 22.75, initial residual: 0.0012698506902867053
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1 2 3 4]
Counts of unique number of iterations: [12119 26 2790 65]
Maximum f: 50.14669383688169
Maximum residual: 3.1994009491809425e-09
Residual: 0.01125547255201783
Outer Newton iteration #1
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [12102 22 2709 164 3]
Maximum f: 75.49974796139144
Maximum residual: 2.624166197076301e-09
Residual: 0.01613850129093001
Outer Newton iteration #2
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [12094 16 2352 521 17]
Maximum f: 112.38886200504191
Maximum residual: 3.439952059714869e-09
Residual: 0.010057266896525136
Outer Newton iteration #3
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [12087 18 2231 645 19]
Maximum f: 126.1851339816193
Maximum residual: 2.887067526737981e-09
Residual: 0.0046928305823081854
Outer Newton iteration #4
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [12084 19 2211 667 19]
Maximum f: 130.4294891396616
Maximum residual: 2.2795034419890342e-09
Residual: 0.0036394006770381912
Outer Newton iteration #5
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [12082 17 2208 673 20]
Maximum f: 131.97346778200122
Maximum residual: 1.7875952731366231e-09
Residual: 0.000888617865595232
Outer Newton iteration #6
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [12082 17 2207 674 20]
Maximum f: 132.43275844109672
Maximum residual: 5.047734345022004e-09
Residual: 1.8959646289737513e-05
Outer Newton iteration #7
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [12082 17 2207 674 20]
Maximum f: 132.43735152957282
Maximum residual: 5.044392878023876e-09
Residual: 4.714585905734586e-09
Outer Newton iteration #8
Inner Newton summary:
Unique number of iterations: [1 2 3 4 5]
Counts of unique number of iterations: [12082 17 2207 674 20]
Maximum f: 132.4373528199075
Maximum residual: 5.04439014693748e-09
Residual: 2.7591921386899504e-14
Slope stability factor: 6.594202898550725
Verification#
Critical load#
According to Chen and Liu [1990], we can derive analytically the slope stability factor \(l_\text{lim}\) for the standard Mohr-Coulomb plasticity model (without apex smoothing) under plane strain assumption for associative plastic flow
where \(\gamma_\text{lim}\) is an associated value of the soil self-weight. In particular, for the rectangular slope with the friction angle \(\phi\) equal to \(30^\circ\), \(l_\text{lim} = 6.69\) [Chen and Liu, 1990]. Thus, by computing \(\gamma_\text{lim}\) from the formula above, we can progressively increase the second component of the gravitational body force \(\boldsymbol{q}=[0, -\gamma]^T\), up to the critical value \(\gamma_\text{lim}^\text{num}\), when the perfect plasticity plateau is reached on the loading-displacement curve at the \((0, H)\) point and then compare \(\gamma_\text{lim}^\text{num}\) against analytical \(\gamma_\text{lim}\).
By demonstrating the loading-displacement curve on the figure below we approve that the yield strength limit reached for \(\gamma_\text{lim}^\text{num}\) is close to \(\gamma_\text{lim}\).
if len(points_on_process) > 0:
l_lim = 6.69
gamma_lim = l_lim / H * c
plt.plot(results[:, 0], results[:, 1], "o-", label=r"$\gamma$")
plt.axhline(y=gamma_lim, color="r", linestyle="--", label=r"$\gamma_\text{lim}$")
plt.xlabel(r"Displacement of the slope $u_x$ at $(0, H)$ [mm]")
plt.ylabel(r"Soil self-weight $\gamma$ [MPa/mm$^3$]")
plt.grid()
plt.legend()
The slope profile reaching its stability limit:
try:
import pyvista
print(pyvista.global_theme.jupyter_backend)
import dolfinx.plot
pyvista.start_xvfb(0.1)
W = fem.functionspace(domain, ("Lagrange", 1, (gdim,)))
u_tmp = fem.Function(W, name="Displacement")
u_tmp.interpolate(u)
pyvista.start_xvfb()
plotter = pyvista.Plotter(window_size=[600, 400])
topology, cell_types, x = dolfinx.plot.vtk_mesh(domain)
grid = pyvista.UnstructuredGrid(topology, cell_types, x)
vals = np.zeros((x.shape[0], 3))
vals[:, : len(u_tmp)] = u_tmp.x.array.reshape((x.shape[0], len(u_tmp)))
grid["u"] = vals
warped = grid.warp_by_vector("u", factor=20)
plotter.add_text("Displacement field", font_size=11)
plotter.add_mesh(warped, show_edges=False, show_scalar_bar=True)
plotter.view_xy()
plotter.show()
except ImportError:
print("pyvista required for this plot")
static
error: XDG_RUNTIME_DIR is invalid or not set in the environment.
MESA: error: ZINK: failed to choose pdev
glx: failed to create drisw screen
error: XDG_RUNTIME_DIR is invalid or not set in the environment.
MESA: error: ZINK: failed to choose pdev
glx: failed to create drisw screen
error: XDG_RUNTIME_DIR is invalid or not set in the environment.
MESA: error: ZINK: failed to choose pdev
glx: failed to create drisw screen
Yield surface#
We verify that the constitutive model is correctly implemented by tracing the yield surface. We generate several stress paths and check whether they remain within the Mohr-Coulomb yield surface. The stress tracing is performed in the Haigh-Westergaard coordinates \((\xi, \rho, \theta)\) which are defined as follows
where \(J_3(\boldsymbol{\sigma}) = \det(\boldsymbol{s})\) is the third invariant of the deviatoric part of the stress tensor, \(\xi\) is the deviatoric coordinate, \(\rho\) is the radial coordinate and the angle \(\theta \in [-\frac{\pi}{6}, \frac{\pi}{6}]\) is called Lode or stress angle.
To generate the stress paths we use the principal stresses formula written in Haigh-Westergaard coordinates as follows
where \(p = \xi/\sqrt{3}\) is a hydrostatic variable and \(\sigma_{I} \geq \sigma_{II} \geq \sigma_{III}\).
Now we generate the loading path by evaluating principal stresses in Haigh-Westergaard coordinates for the Lode angle \(\theta\) being varied from \(-\frac{\pi}{6}\) to \(\frac{\pi}{6}\) with fixed \(\rho\) and \(p\).
N_angles = 50
N_loads = 9 # number of loadings or paths
eps = 0.00001
R = 0.7 # fix the values of rho
p = 0.1 # fix the deviatoric coordinate
theta_1 = -np.pi / 6
theta_2 = np.pi / 6
theta_values = np.linspace(theta_1 + eps, theta_2 - eps, N_angles)
theta_returned = np.empty((N_loads, N_angles))
rho_returned = np.empty((N_loads, N_angles))
sigma_returned = np.empty((N_loads, N_angles, stress_dim))
# fix an increment of the stress path
dsigma_path = np.zeros((N_angles, stress_dim))
dsigma_path[:, 0] = (R / np.sqrt(2)) * (np.cos(theta_values) + np.sin(theta_values) / np.sqrt(3))
dsigma_path[:, 1] = (R / np.sqrt(2)) * (-2 * np.sin(theta_values) / np.sqrt(3))
dsigma_path[:, 2] = (R / np.sqrt(2)) * (np.sin(theta_values) / np.sqrt(3) - np.cos(theta_values))
sigma_n_local = np.zeros_like(dsigma_path)
sigma_n_local[:, 0] = p
sigma_n_local[:, 1] = p
sigma_n_local[:, 2] = p
derviatoric_axis = tr
Then, we define and vectorize functions rho
, Lode_angle
and sigma_tracing
evaluating respectively the coordinates \(\rho\), \(\theta\) and the corrected (or
“returned”) stress tensor for a certain stress state. sigma_tracing
calls the
function return_mapping
, where the constitutive model was defined via JAX
previously.
def rho(sigma_local):
s = dev @ sigma_local
return jnp.sqrt(2.0 * J2(s))
def Lode_angle(sigma_local):
s = dev @ sigma_local
arg = -(3.0 * jnp.sqrt(3.0) * J3(s)) / (2.0 * jnp.sqrt(J2(s) * J2(s) * J2(s)))
arg = jnp.clip(arg, -1.0, 1.0)
angle = 1.0 / 3.0 * jnp.arcsin(arg)
return angle
def sigma_tracing(sigma_local, sigma_n_local):
deps_elas = S_elas @ sigma_local
sigma_corrected, state = return_mapping(deps_elas, sigma_n_local)
yielding = state[2]
return sigma_corrected, yielding
Lode_angle_v = jax.jit(jax.vmap(Lode_angle, in_axes=(0)))
rho_v = jax.jit(jax.vmap(rho, in_axes=(0)))
sigma_tracing_v = jax.jit(jax.vmap(sigma_tracing, in_axes=(0, 0)))
For each stress path, we call the function sigma_tracing_v
to get the
corrected stress state and then we project it onto the deviatoric plane \((\rho,
\theta)\) with a fixed value of \(p\).
for i in range(N_loads):
print(f"Loading path#{i}")
dsigma, yielding = sigma_tracing_v(dsigma_path, sigma_n_local)
dp = dsigma @ tr / 3.0 - p
dsigma -= np.outer(dp, derviatoric_axis) # projection on the same deviatoric plane
sigma_returned[i, :] = dsigma
theta_returned[i, :] = Lode_angle_v(dsigma)
rho_returned[i, :] = rho_v(dsigma)
print(f"max f: {jnp.max(yielding)}\n")
sigma_n_local[:] = dsigma
Loading path#0
max f: -2.005661796528811
Loading path#1
max f: -1.6474140052837287
Loading path#2
max f: -1.208026577509537
Loading path#3
max f: -0.7355419142072792
Loading path#4
max f: -0.24734105482689195
Loading path#5
max f: 0.24936204365846004
Loading path#6
max f: 0.5729074243253174
Loading path#7
max f: 0.6673099622873986
Loading path#8
max f: 0.6947128474362492
Then, by knowing the expression of the standrad Mohr-Coulomb yield surface in principle stresses, we can obtain an analogue expression in Haigh-Westergaard coordinates, which leads us to the following equation:
Thus, we restore the standard Mohr-Coulomb yield surface:
def MC_yield_surface(theta_, p):
"""Restores the coordinate `rho` satisfying the standard Mohr-Coulomb yield
criterion."""
rho = (np.sqrt(2) * (c * np.cos(phi) + p * np.sin(phi))) / (
np.cos(theta_) - np.sin(phi) * np.sin(theta_) / np.sqrt(3)
)
return rho
rho_standard_MC = MC_yield_surface(theta_values, p)
Finally, we plot the yield surface:
colormap = cm.plasma
colors = colormap(np.linspace(0.0, 1.0, N_loads))
fig, ax = plt.subplots(subplot_kw={"projection": "polar"}, figsize=(8, 8))
# Mohr-Coulomb yield surface with apex smoothing
for i, color in enumerate(colors):
rho_total = np.array([])
theta_total = np.array([])
for j in range(12):
angles = j * np.pi / 3 - j % 2 * theta_returned[i] + (1 - j % 2) * theta_returned[i]
theta_total = np.concatenate([theta_total, angles])
rho_total = np.concatenate([rho_total, rho_returned[i]])
ax.plot(theta_total, rho_total, ".", color=color)
# standard Mohr-Coulomb yield surface
theta_standard_MC_total = np.array([])
rho_standard_MC_total = np.array([])
for j in range(12):
angles = j * np.pi / 3 - j % 2 * theta_values + (1 - j % 2) * theta_values
theta_standard_MC_total = np.concatenate([theta_standard_MC_total, angles])
rho_standard_MC_total = np.concatenate([rho_standard_MC_total, rho_standard_MC])
ax.plot(theta_standard_MC_total, rho_standard_MC_total, "-", color="black")
ax.set_yticklabels([])
norm = mcolors.Normalize(vmin=0.1, vmax=0.7 * 9)
sm = plt.cm.ScalarMappable(cmap=colormap, norm=norm)
sm.set_array([])
cbar = fig.colorbar(sm, ax=ax, orientation="vertical")
cbar.set_label(r"Magnitude of the stress path deviator, $\rho$ [MPa]")
plt.show()
Each colour represents one loading path. The circles are associated with the loading during the elastic phase. Once the loading reaches the elastic limit, the circles start outlining the yield surface, which in the limit lay along the standard Mohr-Coulomb one without smoothing (black contour).
Taylor test#
Here, we perform a Taylor test to check that the form \(F\) and its Jacobian \(J\)
are consistent zeroth- and first-order approximations of the residual \(F\). In
particular, the test verifies that the program dsigma_ddeps_vec
obtained by the JAX’s AD returns correct values of the external operator
\(\boldsymbol{\sigma}\) and its derivative \(\boldsymbol{C}_\text{tang}\), which
define \(F\) and \(J\) respectively.
To perform the test, we introduce the operators \(\mathcal{F}: V \rightarrow V^\prime\) and \(\mathcal{J}: V \rightarrow \mathcal{L}(V, V^\prime)\) defined as follows:
where \(V^\prime\) is a dual space of \(V\), \(\langle \cdot, \cdot \rangle\) is the \(V^\prime \times V\) duality pairing and \(\mathcal{L}(V, V^\prime)\) is a space of bounded linear operators from \(V\) to its dual.
Then, by following the Taylor’s theorem on Banach spaces and perturbating the functional \(\mathcal{F}\) in the direction \(k \, \boldsymbol{δu} \in V\) for \(k > 0\), the zeroth and first order Taylor reminders \(r_k^0\) and \(r_k^1\) have the following mesh-independent convergence rates in the dual space \(V^\prime\):
In order to compute the norm of an element \(f \in V^\prime\) from the dual space \(V^\prime\), we apply the Riesz representation theorem, which states that there is a linear isometric isomorphism \(\mathcal{R} : V^\prime \to V\), which associates a linear functional \(f\) with a unique element \(\mathcal{R} f = \boldsymbol{u} \in V\). In practice, within a finite subspace \(V_h \subset V\), the Riesz map \(\mathcal{R}\) is represented by the matrix \(\mathsf{L}^{-1}\), the inverse of the Laplacian operator [Kirby, 2010]
where \(\{\varphi_i\}_{i=1}^{\dim V_h}\) is a set of basis function of the space \(V_h\).
If the Euclidean vectors \(\mathsf{r}_k^i \in \mathbb{R}^{\dim V_h}, \, i \in \{0,1\}\) represent the Taylor remainders from (8)–(9) in the finite space, then the dual norms are computed through the following formula [Kirby, 2010]
In practice, the vectors \(\mathsf{r}_k^i\) are defined through the residual vector \(\mathsf{F} \in \mathbb{R}^{\dim V_h}\) and the Jacobian matrix \(\mathsf{J} \in \mathbb{R}^{\dim V_h\times\dim V_h}\)
where \(\mathsf{u} \in \mathbb{R}^{\dim V_h}\) and \(\mathsf{\delta u} \in \mathbb{R}^{\dim V_h}\) represent dispacement fields \(\boldsymbol{u} \in V_h\) and \(\boldsymbol{\delta u} \in V_h\).
Now we can proceed with the Taylor test implementation. Let us first start with defining the Laplace operator.
L_form = fem.form(ufl.inner(ufl.grad(u_hat), ufl.grad(v)) * ufl.dx)
L = fem.petsc.assemble_matrix(L_form, bcs=bcs)
L.assemble()
Riesz_solver = PETSc.KSP().create(domain.comm)
Riesz_solver.setType("preonly")
Riesz_solver.getPC().setType("lu")
Riesz_solver.setOperators(L)
y = fem.Function(V, name="Riesz_representer_of_r") # r - a Taylor remainder
Now we initialize main variables of the plasticity problem.
# Reset main variables to zero including the external operators values
sigma_n.x.array[:] = 0.0
sigma.ref_coefficient.x.array[:] = 0.0
J_external_operators[0].ref_coefficient.x.array[:] = 0.0
# Reset the values of the consistent tangent matrix to elastic moduli
Du.x.array[:] = 1.0
evaluated_operands = evaluate_operands(F_external_operators)
_ = evaluate_external_operators(J_external_operators, evaluated_operands)
Inner Newton summary:
Unique number of iterations: [1]
Counts of unique number of iterations: [15000]
Maximum f: -2.2109628558449494
Maximum residual: 0.0
As the derivatives of the constitutive model are different for elastic and plastic phases, we must consider two initial states for the Taylor test. For this reason, we solve the problem once for a certain loading value to get the initial state close to the one with plastic deformations but still remain in the elastic phase.
i = 0
load = 2.0
q.value = load * np.array([0, -gamma])
external_operator_problem.assemble_vector()
residual_0 = external_operator_problem.b.norm()
residual = residual_0
Du.x.array[:] = 0
if MPI.COMM_WORLD.rank == 0:
print(f"Load increment #{i}, load: {load}, initial residual: {residual_0}")
for iteration in range(0, max_iterations):
if residual / residual_0 < relative_tolerance:
break
if MPI.COMM_WORLD.rank == 0:
print(f"\tOuter Newton iteration #{iteration}")
external_operator_problem.assemble_matrix()
external_operator_problem.solve(du)
Du.x.petsc_vec.axpy(1.0, du.x.petsc_vec)
Du.x.scatter_forward()
evaluated_operands = evaluate_operands(F_external_operators)
((_, sigma_new),) = evaluate_external_operators(J_external_operators, evaluated_operands)
sigma.ref_coefficient.x.array[:] = sigma_new
external_operator_problem.assemble_vector()
residual = external_operator_problem.b.norm()
if MPI.COMM_WORLD.rank == 0:
print(f"\tResidual: {residual}\n")
sigma_n.x.array[:] = sigma.ref_coefficient.x.array
# Initial values of the displacement field and the stress state for the Taylor
# test
Du0 = np.copy(Du.x.array)
sigma_n0 = np.copy(sigma_n.x.array)
Load increment #0, load: 2.0, initial residual: 0.027573900703382316
Outer Newton iteration #0
Inner Newton summary:
Unique number of iterations: [1]
Counts of unique number of iterations: [15000]
Maximum f: -0.2983932974714918
Maximum residual: 0.0
Residual: 7.890919449890783e-14
If we take into account the initial stress state sigma_n0
computed in the cell
above, we perform the Taylor test for the plastic phase, otherwise we stay in
the elastic one.
Finally, we define the function perform_Taylor_test
, which returns the norms
of the Taylor reminders in dual space (10)–(12).
k_list = np.logspace(-2.0, -6.0, 5)[::-1]
def perform_Taylor_test(Du0, sigma_n0):
# r0 = F(Du0 + k*δu) - F(Du0)
# r1 = F(Du0 + k*δu) - F(Du0) - k*J(Du0)*δu
Du.x.array[:] = Du0
sigma_n.x.array[:] = sigma_n0
evaluated_operands = evaluate_operands(F_external_operators)
((_, sigma_new),) = evaluate_external_operators(J_external_operators, evaluated_operands)
sigma.ref_coefficient.x.array[:] = sigma_new
F0 = fem.petsc.assemble_vector(F_form) # F(Du0)
F0.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
fem.set_bc(F0, bcs)
J0 = fem.petsc.assemble_matrix(J_form, bcs=bcs)
J0.assemble() # J(Du0)
Ju = J0.createVecLeft() # Ju = J0 @ u
δu = fem.Function(V)
δu.x.array[:] = Du0 # δu == Du0
zero_order_remainder = np.zeros_like(k_list)
first_order_remainder = np.zeros_like(k_list)
for i, k in enumerate(k_list):
Du.x.array[:] = Du0 + k * δu.x.array
evaluated_operands = evaluate_operands(F_external_operators)
((_, sigma_new),) = evaluate_external_operators(J_external_operators, evaluated_operands)
sigma.ref_coefficient.x.array[:] = sigma_new
F_delta = fem.petsc.assemble_vector(F_form) # F(Du0 + h*δu)
F_delta.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
fem.set_bc(F_delta, bcs)
J0.mult(δu.x.petsc_vec, Ju) # Ju = J(Du0)*δu
Ju.scale(k) # Ju = k*Ju
r0 = F_delta - F0
r1 = F_delta - F0 - Ju
Riesz_solver.solve(r0, y.x.petsc_vec) # y = L^{-1} r0
y.x.scatter_forward()
zero_order_remainder[i] = np.sqrt(r0.dot(y.x.petsc_vec)) # sqrt{r0^T L^{-1} r0}
Riesz_solver.solve(r1, y.x.petsc_vec) # y = L^{-1} r1
y.x.scatter_forward()
first_order_remainder[i] = np.sqrt(r1.dot(y.x.petsc_vec)) # sqrt{r1^T L^{-1} r1}
return zero_order_remainder, first_order_remainder
print("Elastic phase")
zero_order_remainder_elastic, first_order_remainder_elastic = perform_Taylor_test(Du0, 0.0)
print("Plastic phase")
zero_order_remainder_plastic, first_order_remainder_plastic = perform_Taylor_test(Du0, sigma_n0)
Elastic phase
Inner Newton summary:
Unique number of iterations: [1]
Counts of unique number of iterations: [15000]
Maximum f: -0.2983932974714918
Maximum residual: 0.0
Inner Newton summary:
Unique number of iterations: [1]
Counts of unique number of iterations: [15000]
Maximum f: -0.29839091658838823
Maximum residual: 0.0
Inner Newton summary:
Unique number of iterations: [1]
Counts of unique number of iterations: [15000]
Maximum f: -0.29836948862876245
Maximum residual: 0.0
Inner Newton summary:
Unique number of iterations: [1]
Counts of unique number of iterations: [15000]
Maximum f: -0.2981552078749816
Maximum residual: 0.0
Inner Newton summary:
Unique number of iterations: [1]
Counts of unique number of iterations: [15000]
Maximum f: -0.2960122846812845
Maximum residual: 0.0
Inner Newton summary:
Unique number of iterations: [1]
Counts of unique number of iterations: [15000]
Maximum f: -0.2745715837020426
Maximum residual: 0.0
Plastic phase
Inner Newton summary:
Unique number of iterations: [1 3 4]
Counts of unique number of iterations: [14989 5 6]
Maximum f: 2.1523374160661706
Maximum residual: 2.191449148030456e-10
Inner Newton summary:
Unique number of iterations: [1 3 4]
Counts of unique number of iterations: [14989 5 6]
Maximum f: 2.15233990398981
Maximum residual: 2.1914579313521028e-10
Inner Newton summary:
Unique number of iterations: [1 3 4]
Counts of unique number of iterations: [14989 5 6]
Maximum f: 2.152362295304328
Maximum residual: 2.1915488686906374e-10
Inner Newton summary:
Unique number of iterations: [1 3 4]
Counts of unique number of iterations: [14989 5 6]
Maximum f: 2.152586208624277
Maximum residual: 2.1924029027367768e-10
Inner Newton summary:
Unique number of iterations: [1 3 4]
Counts of unique number of iterations: [14989 5 6]
Maximum f: 2.154825359292723
Maximum residual: 2.200976411456201e-10
Inner Newton summary:
Unique number of iterations: [1 3 4]
Counts of unique number of iterations: [14989 5 6]
Maximum f: 2.1772186045752187
Maximum residual: 2.2878007480990514e-10
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
axs[0].loglog(k_list, zero_order_remainder_elastic, "o-", label=r"$\|r_k^0\|_{V^\prime}$")
axs[0].loglog(k_list, first_order_remainder_elastic, "o-", label=r"$\|r_k^1\|_{V^\prime}$")
annotation.slope_marker((2e-4, 5e-5), 1, ax=axs[0], poly_kwargs={"facecolor": "tab:blue"})
axs[0].text(0.5, -0.2, "(a) Elastic phase", transform=axs[0].transAxes, ha="center", va="top")
axs[1].loglog(k_list, zero_order_remainder_plastic, "o-", label=r"$\|r_k^0\|_{V^\prime}$")
annotation.slope_marker((2e-4, 5e-5), 1, ax=axs[1], poly_kwargs={"facecolor": "tab:blue"})
axs[1].loglog(k_list, first_order_remainder_plastic, "o-", label=r"$\|r_k^1\|_{V^\prime}$")
annotation.slope_marker((2e-4, 5e-13), 2, ax=axs[1], poly_kwargs={"facecolor": "tab:orange"})
axs[1].text(0.5, -0.2, "(b) Plastic phase", transform=axs[1].transAxes, ha="center", va="top")
for i in range(2):
axs[i].set_xlabel("k")
axs[i].set_ylabel("Taylor remainder norm")
axs[i].legend()
axs[i].grid()
plt.tight_layout()
plt.show()
first_order_rate = np.polyfit(np.log(k_list), np.log(zero_order_remainder_elastic), 1)[0]
second_order_rate = np.polyfit(np.log(k_list), np.log(first_order_remainder_elastic), 1)[0]
print(f"Elastic phase:\n\tthe 1st order rate = {first_order_rate:.2f}\n\tthe 2nd order rate = {second_order_rate:.2f}")
first_order_rate = np.polyfit(np.log(k_list), np.log(zero_order_remainder_plastic), 1)[0]
second_order_rate = np.polyfit(np.log(k_list[1:]), np.log(first_order_remainder_plastic[1:]), 1)[0]
print(f"Plastic phase:\n\tthe 1st order rate = {first_order_rate:.2f}\n\tthe 2nd order rate = {second_order_rate:.2f}")
Elastic phase:
the 1st order rate = 1.00
the 2nd order rate = 0.00
Plastic phase:
the 1st order rate = 1.00
the 2nd order rate = 1.90
For the elastic phase (a) the zeroth-order Taylor remainder \(r_k^0\) achieves the first-order convergence rate, whereas the first-order remainder \(r_k^1\) is computed at the level of machine precision due to the constant Jacobian. Similarly to the elastic flow, the zeroth-order Taylor remainder \(r_k^0\) of the plastic phase (b) reaches the first-order convergence, whereas the first-order remainder \(r_k^1\) achieves the second-order convergence rate, as expected.